

Peach Disease Management Overview for Florida

2019 Peach Field Day, PSREU, Citra, FL

Philip F. Harmon, Ph.D. Professor and Extension Specialist UF/IFAS Plant Pathology Department

Diseases present challenges at all stages of production

- Plant propagation considerations
- Dormant to bud swell
- Bloom to petal fall
- Shuck split to 14 day pre harvest
- Harvest
- The rest of the year
 - Late spring through summer
 - Summer through winter/ "dormancy"

IPM Guide

PAGE

2019 SOUTHEASTERN PEACH, NECTARINE, AND PLUM PEST MANAGEMENT AND CULTURE GUIDE

Senior Editors: Brett Blaauw, Phil Brannen, David Lockwood, and David Ritchie

Section Editors:

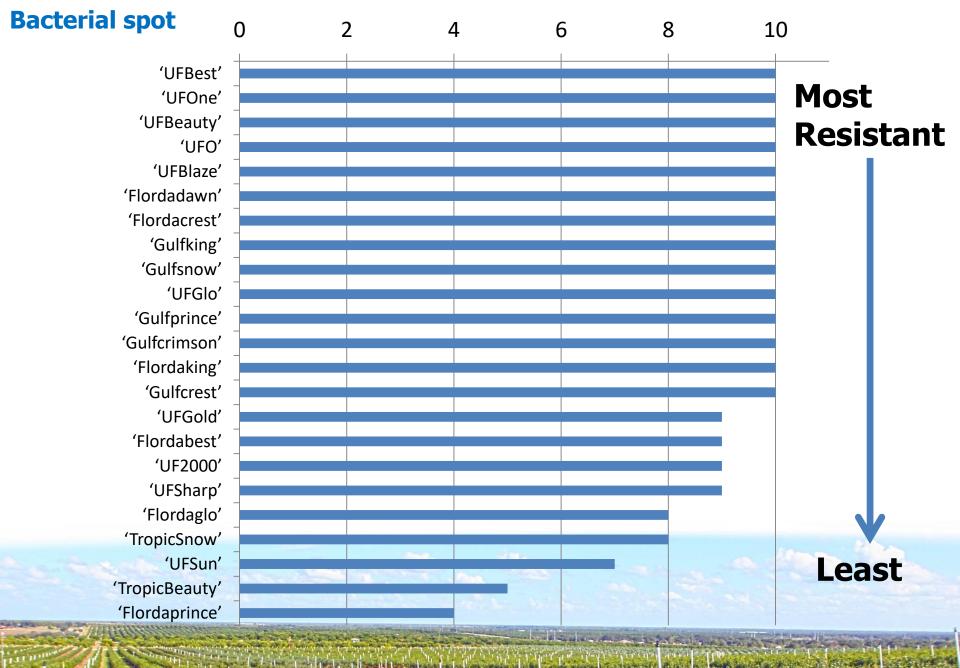
Disease Management – Phil Brannen, David Ritchie, and Guido Schnabel Insect Management – Brett Blaauw and Donn Johnson Weed Management – Wayne Mitchem and David Lockwood Vertebrate Management – David Lockwood Culture –David Lockwood, Dario Chavez, and Juan Carlos Melgar Pesticide Stewardship and Safety –Milton Taylor

Contributors:

Auburn University Wheeler Foshee Mike Patterson Ed Sikora Clemson University Juan Carlos Melgar Greg Reighard Guido Schnabel	University of Florida Pete Anderson Phil Harmon Russ Mizell	University of Georgia Brett Blaauw Phil Brannen Dario Chavez Keith Delaplane Harald Scherm Milton Taylor Louisiana State University Charlie Graham Mississippi State University John Byrd	North Carolina State University Wayne Mitchem Mike Parker David Ritchie Jim Walgenbach University of Tennessee Frank Hale David Lockwood Zachariah Hansen	Texas A&M University Jim Kamas Monte Nesbitt Kevin Ong USDA-ARS, Byron, GA Tom Beckman Chunxian Chen Ted Cottrell Clive Bock
---	--	---	---	--

PACE

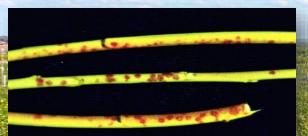
TABLE OF CONTENTS


	FAGE
2019 SOUTHEASTERN PEACH, NECTARINE AND PLUM MANAGEMENT GUIDE	2
POISON CONTROL CENTERS	44
EFFECTIVENESS OF DISEASE CONTROL MATERIALS	45
PEACH INSECTICIDE AND MITICIDE CLASSES, HUMAN EXPOSURE RISKS, FINISH AND EFFICACY RATINGS	
WEED RESPONSE TO HERBICIDES USED IN FRUITS AND NUTS	
PESTICIDE SAFETY	51
PEST MANAGEMENT STRATEGIES	52
RESISTANCE MANAGEMENT	57
ORCHARD WEED MANAGEMENT STRATEGIES	57
HERBICIDE RECOMMENDATIONS	59

NEMATODE CONTROL ON PEACHES	64
PEACH TREE SHORT LIFE MANAGEMENT	
VERTEBRATE MANAGEMENT	65
EFFECT OF pH ON PESTICIDE ACTIVITY	70
EFFECT OF SPRAY WATER pH ON PEACH PESTICIDES	70
SPRAYER CALIBRATION	71
ALTERNATE ROW MIDDLE SPRAYING	72
PEST MANAGEMENT FOR NON-BEARING TREES	72
GIRDLING	72
ANNUAL FERTILIZATION OF BEARING TREES	73
NOTES	74

- Bacterial spot and dormant copper applications
 - Peaches are sensitive to copper, follow label rates, and consult the SE guide for precautions
 - Some copper products are also options for organic production
 - Peach varieties vary in their susceptibility

Florida Peach and Nectarine Varieties, EDIS


- Blossom blight, brown rot, bloom apps
 - Blossom blight and brown rot (both caused by Monilinia fruticola)
 - Usually not an issue at bloom in Florida
 - Bloom up until shuck split apps of Bravo
 - Bloom through harvest apps of Captan
 - Reduced rates of Copper for organic (SE guide)
 - Consider this if brown rot has been an issue

- Scab, petal fall to shuck split apps
 - Scab is caused by *Cladosporium carpophilium*
 - Affects fruit quality
 - Organic options include weekly sulfur and/or reduced rates of copper
 - Bravo app(s) through shuck split
 - Captan every 14d after shuck split
 - Abound (or similar) can be substituted for a

Bravo or Captan app, has

- Brown rot, preharvest apps
 - brown rot (caused by *Monilinia fruticola*)
 - Sporadic issue more common in north FL than farther south
 - Apps occurring 2 weeks and just before harvest where the disease has been an issue
 - Merivon, Luna Sensation > Pristine
 - Orius, Indar, Quash (fungicide resistance likely)
 - Organic option is continued sulfur

- Post harvest foliage and tree management
 - Leaf rust is most important and can result in defoliation and may require fungicide applications
 - Avoid overhead irrigation, manage canopies and weeds to promote air movement
 - Organic options include copper and sulfur

- Peach Leaf Rust
 - Tranzschelia discolor
 - Late summer/fall, wet weather
 - Causes defoliation and early bloom in winter
 - Need to keep leaves on as long as possible
 - Growth, develop fruit buds for next season
 - Controlled with fungicides

- Not much research has been conducted
 - Not mentioned in the SE guide, a Florida problem
- Fungicides with efficacy include:
 - Abound and other Qols
 - Orius, Quash, Indar, Orbit, Topguard and other DMIs
 - Bravo (5 to 6 apps per season total) and Captan (8 to 10 apps total per season)

Fungal Gummosis

- Botryosphaeria dothidea
 - Amber colored sap oozes from cankers under bark
 - Flordaguard rootstock is highly susceptible
 - Fungicide applications (Captan) to trunk early (yrs 1-3) may help to control
 - Reduce stress, sanitation

Mushroom Root Rot

- Armillaria spp., attacks a wide range trees
- First symptoms range from a slow, gradual decline to rapid death
- Slow death of the tree in the aboveground parts is the most common

Phony Peach Xylella fastidiosa

- Canopy of tree is flattened, compact and umbrella-like due to shortened internodes
- Dwarfing
- Early bloom and fruit set and reduced fruit size
- Fruit may be more colorful and will often ripen a few days earlier than normal.
- Production reduced 80-90%
- Trees that develop PPD symptoms before bearing age never become productive. PPD does not kill the tree but may make it more susceptible to other diseases and arthropods

Phony Peach Xylella fastidiosa

- Can be transmitted by grafting
- Spread primarily by a type of leafhopper known as sharpshooters
- Symptoms can develop as late as 18 months or more after initial infection
- Insects are commonly found in Florida in association with weeds, shrubs, and trees that serve as reservoirs for X. fastidiosa

Phony Peach Xylella fastidiosa

- There is no cure for PPD or any other disease caused by *X. fastidiosa*.
- Rogue trees once confirmed PPD
- Manage weeds
- Replanting in a PPD orchard not likely to be successful

Any Questions? Philip Harmon, University of Florida pfharmon@ufl.edu

The property of the property o

Leaf Curl

- Taphrina deformans
 - Occurs sporadically
 - Fungicide applications can control it where it occurs regularly
 - Two dormant apps of Ferbam give good control, Ziram, Thiram, Chlorothalonil, copper may also give control

EFFECTIVENESS OF DISEASE CONTROL MATERIALS ON PEACHES, NECTARINES AND PLUMS IN TI

SOUTHEAST (+++++ = superior; +++++ = excellent, ++++ = good, +++ = fair, ++ = poor, + = suppression, - = no benefit) See IPM Management Guide section for rate particulars. These ratings are benchmarks, actual performance will vary.

Pesticide [MOA CODE]	Class	Leaf curl	Bacterial spot	Blossom blight	Scab	Anthracnose	Red spot	Sooty peach	Brown rot
Abound [11] Gem [11]	QoI (quinone outside inhibitor)	100	573	z	++++ Resistance a threat	++++	1.570	3 (5	++++ Resistance a threat
coppers [M1]	multi-site toxins	+++	+++ Resistance a threat	2	2	1820	-28	12	2
Botran [14]	multi-site toxin	1.5	172	+	51	1270	(79)	17	+
Mycoshield [41] FireLine [41]	antibiotic	070	+++ Resistance a threat	ā	=	85	175	5	
captan [M4]	multi-site toxin	0 - 0		++	++++	+++	(11)	++	+++
Ferbam [M3]	multi-site toxin	+++++	172	25	52	1270	+++	100	
Thiram [M3]	multi-site toxin	+++	-	-		-	++++	-	· · ·
ziram [M3]	multi-site toxin	+++	+	-	+		+++	+++	
sulfur [M2]	multi-site toxin	3023	122	+	+++	1929	125	12	+
chlorothalonil [M5]	multi-site toxin	++++		+++	++++		8.00	-	
Rovral [2]	dicarboximide	1979	152	++++	51	1274	++	++	7.
Orius [3]	DMI (dimethylation inhibitor)	(17)	-	+++++	5	(1 7)	(.7.1)	5	+++++ Resistance a threat
Quash [3]	DMI	0.70		+++++	5.	17		1	+++++ Resistance a threat
Indar [3]	DMI	823	20	+++++	++	121	120	1	+++++ Resistance a threat
Raily [3]	DMI	-	141	+++	¥	1.4	140	-	+ Resistance a threat
Orbit [3] PropiMax [3] Bumper [3]	DMI	1-1	-	++++	-		()	-	++++ Resistance a threat
Topguard [3]	DMI	070	1.71	++++		(c)	1071	5	++++ Resistance a

			40
UTHEA	ST (continued)	
d spot	Sooty peach	Brown rot	Rhizopus

EFFECTIVENESS	OF DISEASE CONTRO	L MATERIALS	S ON PEACH	ES, NECTARIN	NES AND PLUMS	IN THE SOUTHEA	ST (continued)
Construction of the second			and the second se	the second s				

Pesticide [MOA CODE]	Class	Leaf curl	Bacterial spot	Blossom blight	Scab	Anthracnose	Red spot	Sooty peach	Brown rot	Rhizopus rot
Topsin-M [1] Thiophanate Methyl [1]	MBC (methyl benzimidizole carbamate)	12.5		++++ Resistance a threat	+++++ Resistance a threat	120	2	ĩ	+++ Resistance a threat	-
Vangard, Scala [9]	anilinopyrimidine	3275	2	++++	12		12	<u>21</u> 1	12	121
Inspire Super [9, 3]	anilinopyrimidine and DMI	8 8 3	E.	+++++	+++	?	ж	×	+++++	?
Inspire Super [9, 3] plus Tilt [3]	Anilinopyrimidine and DMIs	-	(a)	+++++	+++	++++	-	<u>ш</u>	+++++	?
Scholar [12]	phenylpyrrole	220	1	22		120	12	2	+++++	++++
Fontelis [7]	SDHI-pyrazole carboxamide	200	55	++++	++	+	10	3.	++++ Resistance a threat	+
Luna Privilege [7]	SDHI - pyridinyl-ethyl- benzamides	8275	12	++++	++	?	12	2	+++++ Resistance a threat	+
Merivon [11, 7]	QoI and SDHI-pyrazole	573	5	++++++	++++	++++	12		++++++	+++
Luna Sensation [11, 7]	QoI and SDHI - pyridinyl-ethyl- benzamides	12.5	<u>1</u>	++++++	****	++++	12	£.	++++++	+++
Pristine [11, 7]	QoI and SDHI-pyridine- carboxamide	9 7 .0		+++++	++++	++++		2 2	+++++	+++
Quadris Top [11, 3]	QoI and DMI	2 4 31	-	++++	++++	+++	14	2	++++	3 + +

Fungicides with the same MOA CODE, unless multi-site, are NOT appropriate as tank-mixing partners or for alternating as they have similar modes of action and are prone to cross-resistance.

Trade Name	Active Ingredient	Chemical Class	Manufacturer
1. Fontelis (DPX- LEM17)	Penthiopyrad	SDHI	DuPont
2. Luna Sensation	Trifloxystrobin + Fluopyram	Strobilurin + SDHI	Bayer
3. Merivon	Pyraclostrobin + Fluxapyroxad	Strobilurin + SDHI	BASF
4. Inspire Super	Difenoconazole + Cyprodinil	DMI + AP	Syngenta
5. Inspire XT	Difenoconazole + Propiconazole	DMI + DMI	Syngenta
6. Quadris Top	Difenoconazole + Azoxystrobin	DMI + Strobilurin	Syngenta
7. Topguard	Flutriafol	DMI	Cheminova
Chemical Standard = Pristine	Pyraclostrobin + Boscalid	Strobilurin + SDHI	BASF