Melting & Non-melting Flesh
Peaches: *Harvesting for Optimum Fruit Quality*

Jeff Brecht
Horticultural Sciences Dept.
University of Florida - IFAS
Increasing Consumption of Specialty Crops by Enhancing their Quality & Safety

Goal of the Project:

Help producers remove postharvest handling impediments that keep consistently great tasting fruits and vegetables from being marketed.
Consumer Behavior and Attitudes

• How does flavor, as affected by harvest and postharvest practices, influence consumer behavior and attitudes regarding fruit (peach) consumption?
Consumers’ three highest preferences for peach attributes.

Most Important Attributes in Peaches

- The right aroma
- Tangy
- Crispy or crunchy
- Juicy
- Sweet
- Firm
- Soft
- The right color
Consumers’ three most common reasons for dissatisfaction with peaches.

Reasons for Dissatisfaction with Peaches

- Flavorless
- Too soft
- Too hard
- Too sour
- Too sweet
- Not ripe enough
- Not juicy enough
- Bruised
- Mealy
- I am not dissatisfied
Maturity

• Optimum harvest maturity corresponds to maximum taste and storage quality (adequate shelf life)
Maturity

• Harvest maturity determines a peach’s postharvest potential:
 – **Too early** = poor flavor potential, and greater susceptibility to physiological disorders, abrasion injury, and water loss

 The ability of the fruit to ripen properly can be compromised

 More susceptible to chilling injury (internal breakdown)

 – **Too late** = greater susceptibility to bruising and decay; possible off-flavor
Maturity Indices

- **Size** (minimum diameter)
 - Peaches may begin ripening before they reach full size
- **Ground color** development (green to yellow)
- **Softening** first occurs at the blossom end
- **Location on tree**: top and outside fruit normally mature first
- Also, flesh color, **soluble solids content** (SSC, aka Brix), acidity, and SSC/acidity ratio all change

http://www.prima.com
Best Maturity Indices for Harvesting

Ground color has been found to be the most reliable nondestructive maturity index and the most easily understood by pickers (Kao et al. 2012)

- the best ground color at harvest varies by variety and intended market, so workers should be shown examples before harvest commences
Best Maturity Indices for Harvesting

For varieties with 100% red color, fruit **firmness** is the next best maturity criteria (Brovelli et al., 1998)

- Firmness at harvest is very well correlated with consumer satisfaction after storage/shipping
- Of course, SSC must be acceptable

[Link](http://msue.anr.msu.edu/news/monitoring_peach_and_nectarine_ripening)
Example Handheld Instrument Results for Soluble Solids (°Brix)

Results for a local peach calibration done at UC Davis

Non-destructive measurement on whole fruit.

Felix F-750 optical (near infrared) instrument

![Graph showing correlation between Actual Soluble Solids (°Brix) and Predicted Soluble Solids (°Brix)](image)

- Measurement in Lab
- Measurement in field under sun

$r = 0.92$
The most significant harvest maturity indices for some Florida nonmelting flesh (NMF) and melting flesh (MF) peach varieties based on sensory evaluation of ripe fruit (Ernesto Brovelli Ph.D. dissertation research).

<table>
<thead>
<tr>
<th></th>
<th>Oro A (NMF)</th>
<th>FL 90-20 (MF)</th>
<th>FL 86-28C (NMF)</th>
<th>TropicBeauty (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheek firmness (-0.85**)</td>
<td>Ground color hue (-0.88**)</td>
<td>Blossom end firmness (-0.91**)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blossom end firmness (-0.82**)</td>
<td>Ground color Lightness (-0.88**)</td>
<td>Cheek hue (-0.90**)</td>
<td>Cheek firmness (-0.83**)</td>
<td></td>
</tr>
<tr>
<td>Cheek chroma (-0.82**)</td>
<td>Cheek firmness (-0.81**)</td>
<td>Cheek firmness (-0.90**)</td>
<td>Blossom end firmness (-0.79**)</td>
<td></td>
</tr>
<tr>
<td>SSC:TA (0.80**)</td>
<td>Blossom end firmness (-0.75**)</td>
<td>Blossom end hue (-0.87**)</td>
<td>Ground color hue (-0.70**)</td>
<td></td>
</tr>
<tr>
<td>TA (-0.77*)</td>
<td>Ethylene production (0.80*)</td>
<td>pH (0.65**)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* and ** indicate significance at the 5% and 1% levels, respectively.
The most significant harvest maturity indices for some Florida nonmelting flesh (NMF) and melting flesh (MF) peach varieties based on sensory evaluation of ripe fruit (Ernesto Brovelli Ph.D. dissertation research).

<table>
<thead>
<tr>
<th></th>
<th>Oro A (NMF)</th>
<th>FL 90-20 (MF)</th>
<th>FL 86-28C (NMF)</th>
<th>TropicBeauty (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheek firmness</td>
<td>Ground color hue (-0.88**)</td>
<td>Blossom end firmness (-0.91**)</td>
<td>Cheek firmness (-0.83**)</td>
<td></td>
</tr>
<tr>
<td>Cheek chroma</td>
<td>Cheek firmness (-0.81**)</td>
<td>Cheek firmness (-0.90**)</td>
<td>Blossom end firmness (-0.79**)</td>
<td></td>
</tr>
<tr>
<td>SSC:TA (0.80**)</td>
<td>Blossom end firmness (-0.75**)</td>
<td>Blossom end hue (-0.87**)</td>
<td>Ground color hue (-0.70**)</td>
<td></td>
</tr>
</tbody>
</table>
| TA (-0.77*) | Ethylene production (0.80*) | pH (0.65**) | ** and ** indicate significance at the 5% and 1% levels, respectively.
The most significant harvest maturity indices for some Florida nonmelting flesh (NMF) and melting flesh (MF) peach varieties based on sensory evaluation of ripe fruit (Ernesto Brovelli Ph.D. dissertation research).

<table>
<thead>
<tr>
<th></th>
<th>Oro A (NMF)</th>
<th>FL 90-20 (MF)</th>
<th>FL 86-28C (NMF)</th>
<th>TropicBeauty (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheek firmness</td>
<td>-0.85**</td>
<td>Ground color hue</td>
<td>Blossom end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.85**)</td>
<td>Ground color hue</td>
<td>firmness (-0.91**)</td>
<td></td>
</tr>
<tr>
<td>Blossom end</td>
<td>Ground color</td>
<td>Cheek hue</td>
<td>Cheek firmness</td>
<td></td>
</tr>
<tr>
<td>firmness (-0.82**)</td>
<td>Lightness (-0.88**)</td>
<td>(-0.90**)</td>
<td>(-0.83**)</td>
<td></td>
</tr>
<tr>
<td>Cheek chroma</td>
<td>Cheek firmness</td>
<td>Cheek firmness</td>
<td>Blossom end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.82**)</td>
<td>(-0.81**)</td>
<td>firmness (-0.79**)</td>
<td></td>
</tr>
<tr>
<td>SSC:TA (0.80**)</td>
<td>Blossom end</td>
<td>Blossom end hue</td>
<td>Ground color</td>
<td></td>
</tr>
<tr>
<td></td>
<td>firmness (-0.75**)</td>
<td>(-0.87**)</td>
<td>color hue</td>
<td></td>
</tr>
<tr>
<td>TA (-0.77*)</td>
<td></td>
<td>Ethylene</td>
<td>pH (0.65**)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>production (0.80*)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* and ** indicate significance at the 5% and 1% levels, respectively.
The most significant harvest maturity indices for some Florida nonmelting flesh (NMF) and melting flesh (MF) peach varieties based on sensory evaluation of ripe fruit (Brovelli, et al., 1998).

Oro A (NMF) FL 90-20 (MF) FL 86-28C (NMF) TropicBeauty (MF) Cheek firmness Ground color hue Blossom end firmness (-0.85**) (-0.88**) firmness (-0.91**) Blossom end Ground color Cheek hue Cheek firmness (-0.82**) (-0.88**) (-0.90**) (-0.83**) Cheek chroma Cheek firmness Cheek firmness Blossom end (-0.82**) (-0.81**) (-0.90**) firmness (-0.79**) SSC: TA (0.80**) Blossom end Blossom end hue Ground color hue firmness (-0.75**) (-0.87**) (-0.70**) TA (-0.77*) Ethylene pH (0.65**)

* and ** indicate significance at the 5% and 1% levels, respectively.
Melting Flesh vs Nonmelting Flesh

- **Melting flesh varieties** need to be harvested before ripening gets substantially underway because excessive softening limits their shelf life.

- **Non-melting flesh varieties** can be harvested at a riper stage and still be firm enough to withstand handling:
 - higher SSC (Brix, sugar) and lower acidity
 - better color and more peach flavor
 - less susceptibility to internal breakdown (chilling injury)
Melting Flesh vs Nonmelting Flesh

• Let’s say that 8 lbs is the minimum firmness/maximum maturity that can be run over your packing line or shipped without incurring bruising

 An 8-lb non-melting flesh peach is a much riper fruit than an 8-lb melting flesh peach

• (Actual bruising thresholds actually vary substantially and therefore must be determined for each variety)
Melting Flesh and Nonmelting Flesh Peaches Have Different Softening Patterns

<table>
<thead>
<tr>
<th>Days of ripening</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmness (lbs-force)</td>
<td>Non-melting flesh peach</td>
<td>Melting flesh peach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Indices

- High SSC is the most important attribute for high consumer acceptance
- Fruit acidity, SSC:acidity ratio and phenolic content are also important for consumer acceptance
- Fruit below 6-8 pounds-force are more acceptable to consumers than firmer fruit

(from Crisosto, Mitcham & Kader, “Nectarine & Peach: Recommendations for Maintaining Postharvest Quality” http://postharvest.ucdavis.edu/PFfruits/NectarinePeach/)
Unfortunately, ground color isn’t well-correlated with Brix

'Gulfking' - Initial Ground Color vs SSC Determined after Ripening for 7 Days at 20C for 3 Harvests
Best Maturities for Direct Marketing versus Refrigerated Handling

(Sherry Kao Ph.D. dissertation research)

MF Cultivars

‘Flordaprince’

‘TropicBeauty’

NMF Cultivars

‘Gulfking’

‘UFSun’
• 100 Tagged marker fruit per variety were monitored in 2007 and 2008

• All fruit >2½ inch diameter were randomly harvested when 50%, 70%, and 90% of the marker fruit reached commercial harvest stage (based on ground color break)

• Collect a population of peaches with a broad range of maturity stages
Sorted into Maturity Groups by Ground Color
Storage Conditions

7 days at 68°F (ripening)

14 days at 32°F then 7 days at 68°F
Potential Maturity Indices Measured

Non-Destructive:
- Ground color (a^*)
- Size (diameter or weight)

Destructive:
- Flesh firmness
- Soluble solids content (SSC)
- Titratable acidity (TA)
- SSC/TA ratio
- Total sugars
- Flesh color (a^*)

 Peel blush can obscure ground color

(Dewiche and Baumgardner 1985; Crisosto 1994)
Potential Maturity Indices Measured

Non-Destructive:
- Ground color
- Size (diameter)
- Peel blush color

Destructive:
- Soluble solids content
- Titratable acidity (TA)
- Color change (a*)

Potential Maturity Indices Measured

Peel blush color:
- Ground color

95%
Optimum Harvest Maturities

Storage at 20°C for 7 days

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Year 2007</th>
<th>Year 2008</th>
<th>Common Mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF ‘Flordaprince’</td>
<td>5 to 10</td>
<td>< 0 to 20</td>
<td>5 to 10</td>
</tr>
<tr>
<td>MF ‘TropicBeauty’</td>
<td>0 to 10</td>
<td>5 to 20</td>
<td>5 to 10</td>
</tr>
<tr>
<td>NMF ‘UFSun’</td>
<td>5 to 20+</td>
<td>15 to 35+</td>
<td>15 to 20</td>
</tr>
<tr>
<td>NMF ‘Gulfking’</td>
<td>15 to 20+</td>
<td>10 to 25+</td>
<td>15 to 25</td>
</tr>
</tbody>
</table>

Storage at 0°C for 14 days + 20°C for 7 days

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Year 2007</th>
<th>Year 2008</th>
<th>Common Mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF ‘Flordaprince’</td>
<td>-5 to 10</td>
<td>0 to 20</td>
<td>0 to 10</td>
</tr>
<tr>
<td>MF ‘TropicBeauty’</td>
<td>0 to 10</td>
<td>< 0 to 20</td>
<td>0 to 10</td>
</tr>
<tr>
<td>NMF ‘UFSun’</td>
<td>10 to 20+</td>
<td>5 to 15</td>
<td>10 to 15</td>
</tr>
<tr>
<td>NMF ‘Gulfking’</td>
<td>0 to 15</td>
<td><0 to 10</td>
<td>0 to 10</td>
</tr>
</tbody>
</table>

(Numbers indicate ground color: negative numbers are green; positive numbers are more yellow)
Optimum Harvest Maturities

Storage at 20°C for 7 days

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Year 2007</th>
<th>Year 2008</th>
<th>Common Mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF ‘Flordaprince’</td>
<td>5 to 10</td>
<td>< 0 to 20</td>
<td>5 to 10</td>
</tr>
<tr>
<td>MF ‘TropicBeauty’</td>
<td>0 to 10</td>
<td>5 to 20</td>
<td>5 to 10</td>
</tr>
<tr>
<td>NMF ‘UFSun’</td>
<td>5-20+</td>
<td>15-20+</td>
<td>15 to 20</td>
</tr>
<tr>
<td>NMF ‘Gulfking’</td>
<td>15 to 35+</td>
<td>10-25+</td>
<td>15 to 25</td>
</tr>
</tbody>
</table>

(Numbers indicate ground color: negative numbers are green; positive numbers are more yellow)

Storage at 0°C for 14 days + 20°C for 7 days

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Year 2007</th>
<th>Year 2008</th>
<th>Common Mat</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF ‘Flordaprince’</td>
<td>-5 to 10</td>
<td>0 to 10</td>
<td>0 to 10</td>
</tr>
<tr>
<td>MF ‘TropicBeauty’</td>
<td>0 to 10</td>
<td>< 0 to 10</td>
<td>0 to 10</td>
</tr>
<tr>
<td>NMF ‘UFSun’</td>
<td>10 to 20+</td>
<td>10 to 15</td>
<td>10 to 15</td>
</tr>
<tr>
<td>NMF ‘Gulfking’</td>
<td>0 to 15</td>
<td>< 0 to 10</td>
<td>0 to 10</td>
</tr>
</tbody>
</table>

(Numbers indicate ground color: negative numbers are green; positive numbers are more yellow)

Low temp storage – must harvest at less advanced stages

NMF – can be harvested at more advanced stages
Peach Harvesting Practices

• Hand harvest (ladders)
 – maturity selection
 – avoidance of defective fruit
 – avoidance of injuries

• Picked into buckets or bags (usually collected into field bins unless tree ripe)

• Multiple pickings of fruit within a fairly narrow maturity range
Harvest Quality Control

• Train workers to recognize maturity criteria
• Incorporate some grading (avoidance/removal of defective fruit) into the harvest operation
 – difficult when pickers are paid by quantity picked
• Supervision is critical
Harvest Quality Control

- Train workers to minimize fruit injury
 - gentle fruit removal from the tree
 - no dropping fruit into buckets and bags
 - avoid overfilling buckets, bags and bins
 - avoid bumping picking bags against limbs and ladders, etc.
 - carefully transfer fruit into bins (pour, don’t drop)

- Supervision is critical
Harvest Quality Control
Harvest Quality Control
Harvest Quality Control

• Equipment maintenance
 – Harvesting buckets and bags: regular cleaning; repair or replace sharp edges
 – Field bins: routed edges and smooth inside surfaces (plastic liners reduce vibration damage during transport to packinghouse)

• Sanitation & worker hygiene
 – No drops collected
 – No hands on ladder rungs (avoid soil transfer)
Additional Resources

• “Southeastern Peach Growers Handbook”
 (http://www.ent.uga.edu/peach/peachhbk/toc.htm)
 – contains chapters on “Harvesting and Handling Peaches” and “Postharvest Decay.”

• “How to Determine Peach Ripeness” – video by Dr. Desmond Layne, Clemson University
 (http://www.youtube.com/watch?v=l5aU7QqBBgw&feature=related)
• The UF/IFAS Extension/Research Team is currently preparing a manual for Florida stone fruit:

“Harvesting & Postharvest Handling of Stone Fruit in Florida”
Thank you for your attention

jkbrecht@ufl.edu

352-273-4778