Stink Bug Management With Trap Cropping

Dr. Russell F. Mizell, III

Professor of Entomology University of Florida 155 Research Rd, Quincy, FL 32351 rfmizell@ufl.edu ufinsect.ifas.ufl.edu

4 Major Species of Stink & Leaffooted Bugs In Southeast

Euschistus servus

Nezara viridula

Chinavia hilaris (was Acrosternum hilare)

Leptoglossus phyllopus

Other Common Phytophagous Stink Bugs

Euschistus Thyanta Banasa Oebelus Proxys Brochymena *Piezodorus *Halyomorpha *Megacopta

*New invasive species-bad

Common Stink Bug Immature Life Stages

Stink Bug Morphology By Sex (*Euschistus servus*)

Other True Bugs

Largus succinctus L.

Acanthocephala femorata

Predacious Stink Bugs & Other Good Bugs

Phytophagous vs Predacious

Plant feeder 'phytophagous'

Predator

Stink Bug Natural Enemies Wasp Egg Parasites & Tachinid Flies

Some Commonalities

- Overwinter as adults most species
- Polyphagous >1 host plant species
- Food suitability is 'qualitative'
- Move through the landscape to find
- Respond to vegetation structure

Some Commonalities

- Have common natural enemies
- Highly tolerant to insecticides
- Relatively little knowledge for some spp.
- Other tools not available big problem!
- Incremental approach required =IPM

Strategy: Manage Biodiversity via Vegetation-for Profit

- Cover crops
- Intercrops, polyculture
- Shelter belts, hedgerows
- Trap crops
- Outside orchard influences crops, etc.
- Spatial configurations? Landscape!
 crop and vegetation plantings

Biodiversity interactions are the engine.

Cover Crop Functions

- Erosion prevention and water holding (drought remediation)
- Nitrogen enhancement
- Soil organic "matter" increase
- Weed suppression
- Augmentation of beneficial arthropods

Cover Crop Side Effects

- Pest increases
 - Nematodes
 - Arthropods
- Invasive weed outbreaks
- Competition for nutrients, water
- Increased costs establishment
- More intensive mgmt timing
- Unexpected consequences?

Cover Crops – Peaches? Exploiting Habitat Structure & Function, "Putting the Ecosystem to Work"

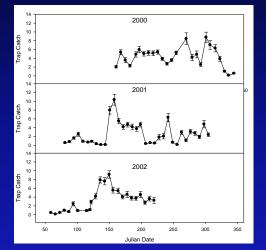
- Site- row middles avoid competition
- Cropping season functions side effects
- Fruit season mowed sod + herbicide strip
- Post harvest grasses, perennial peanut, flowers
 - water, weed, nematode control
 - soil nitrogen- fall-winter-spring (tree age)
 - sun hemp, clovers, legumes, aeschynomene, stylo

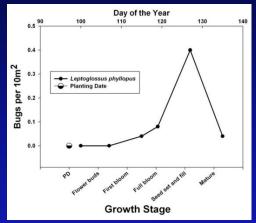
- pest targeting - biological control of borers, scale?

expt. – buckwheat, cowpea- flowers, cheap, easy

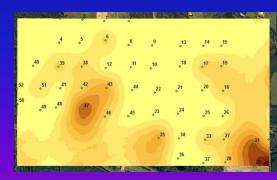
Trap Crops Exploiting Habitat Structure & Function, "Putting the Ecosystem to Work"

- Stink bug biology, ecology and behavior
- Monitoring methods and results
 - temporal
 - spatial
- Trap cropping details
 - temporal
 - spatial
- Associated factors multi-functions




Outside orchard and other considerations

- Change in crop mosaic yr-yr, etc.
- Phenology change due to weather
- Crops planted near orchard
- Local benefits prob. higher in diversity poor landscapes
- Biodiversity conservation may be effective in rich environ., where species occur
- Food web interactions in time and space often unpredictable, counterprod.
- Functional scales need to be known


Understanding Bug Behavior & Dynamics

- Phenology
- Food quality
- Movement

- Landscape level processes
 - -structures
 - -corridors, barriers, matrices
 - -'edge effect' strong

Monitoring and Detection

- Must have!
- Efficiency labor, costs
- Statistics accuracy, precision

Florida Stink Bug Trap Dr. Russell F. Mizell, III, Inventor

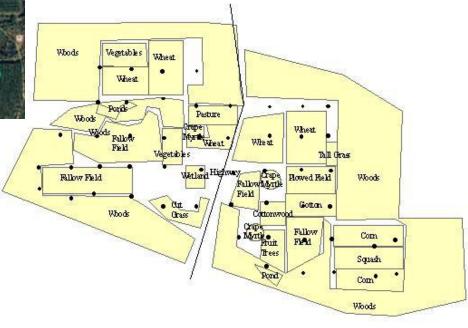
- Captures many Hemiptera species
 Both phytophagous and predacious
- Visual attraction is primary
- Baits can be easy deployed
- Materials: 4 right triangles

 1/4" masonite, screen wire,
 1/4" x 4' metal rod, twist ties
- "Triangle's dimensions:
 4' high, 11" base, 1" top
- Deploy in the open

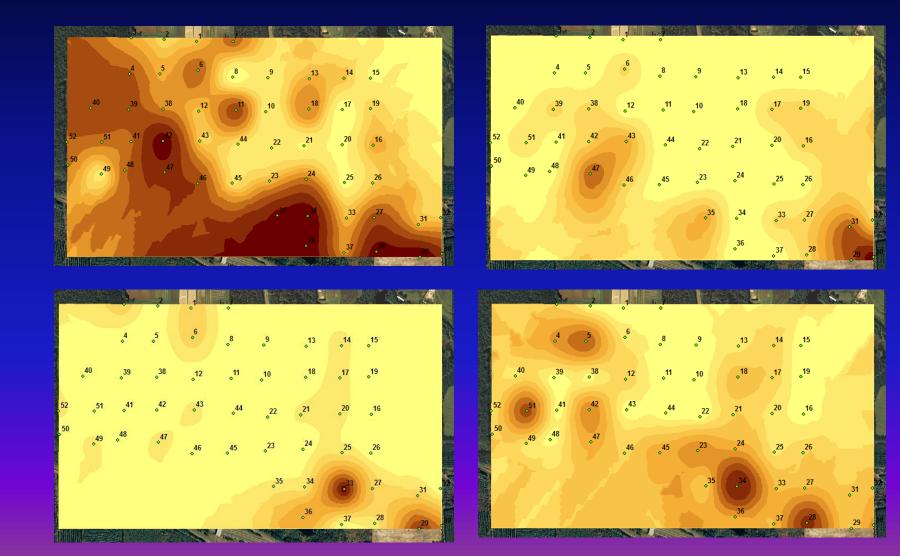
Florida Stink Bug Trap: Bare ground with open top. Nothing touching trap.

Commercial Traps Available

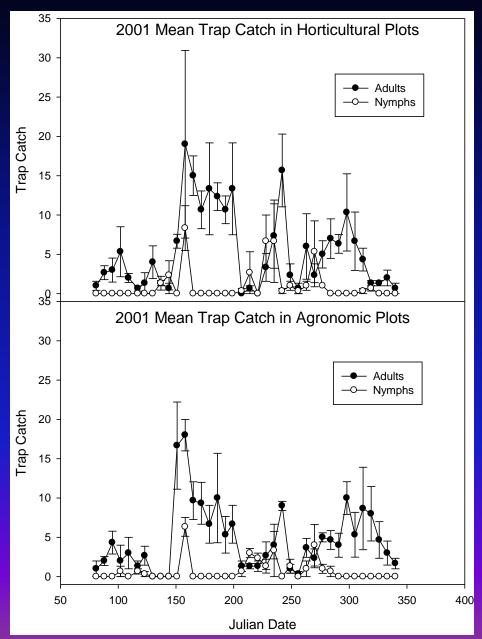
url:ufinsect.ifas.ufl.edu


<u>Stink Bug Trap - AgBio, Inc.</u> www.agbio-inc.com/stink-bug-trap.html

Temporal and Spatial Distributions


Where are the bugs in time and space?

NFREC-Quincy Location

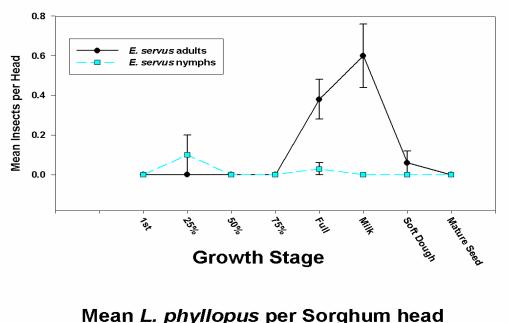


Locations with High Populations of *Euschistus servus* (scale neutral)

Combined Plot Means

•Temporal patterns are not significantly different, P = 0.909; Repeated Measures Analysis

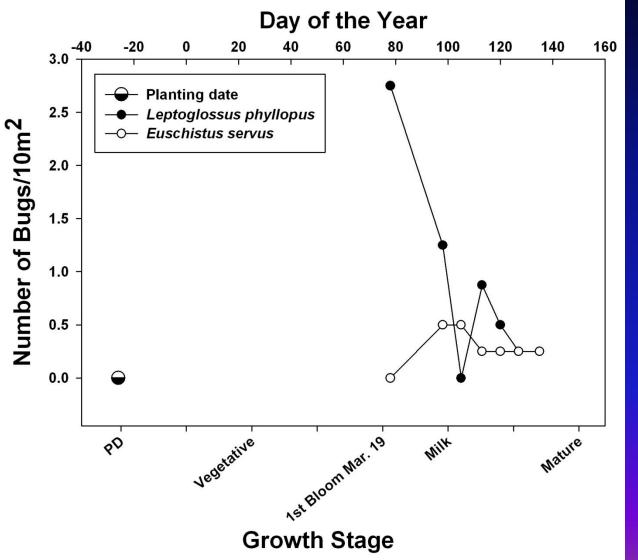
 Note: Nymphs are late instars only


Movement Mechanisms?

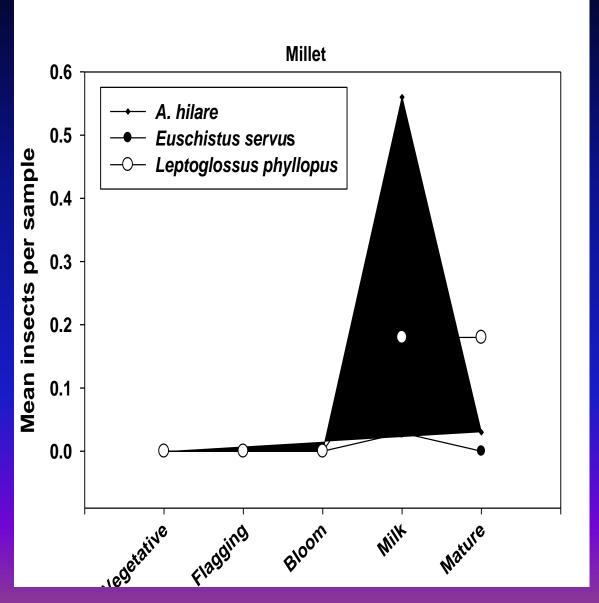
What is driving the behavior ?

How can we exploit it?

Differential Use of Sorghum Growth Stages by *E. servus* and *L. phyllopus*


Mean E. servus per Sorghum Head

Growth Stage


Differential Use of Triticale Growth Stages by *E. servus* and *L. phyllopus*

Differential Use of Millet Growth Stages by *E. servus, C. hilaris* (Es) and *L. phyllopus*

Mechanism

- Food quality very important!!!
 not "preference"*, generalists
- Life stages and species differ somewhat – very close
- Phenology (timing) related statistic
- Driving variable!

Application – tools, trap crops

Summary – So Far

- Behavior understanding required
- Phenology seasonal abundance
- Food quality change mechanism
- Spatial distribution changes time
- Structure is important literature

 affects movement "perceptual range"
 - Edge effect very strong
- Exploitation? Habitat manipulation using trap crops and other tools.

Trap Crop Approach

- Small area w/ highly competitive hosts
- Economical \$\$\$
- Strategic placement (GIS/GPS)

 adjacent (?) to cash crops (Potting et al. 2005)
 must intercept them!!!!
- Minimize side effects & mgmt difficulties
- Combine with other tactics
- For all growing seasons

Cash Crop-Trap Crop Coincidence (phenology)

	Dec	Jan	Feb	Mar	Apr	Мау			
Cash Crop	++++	++++	++++	++++	++++	++++	++++	++++	
Trap crops									

Characters: maturity date, longevity, ratooning, other

What Are the Ideal Features of Trap Crops?

- Attract required pests (multiple species)
- Seeds available (natives?)
- Economical -\$\$\$
- Culture & management seasons
- Minimal side effects (invasive, other pests)

Trap Crop Ideal Features, cont.

- Maturity time length, cv range
- Good duration (ratooning)
- Height barrier
- Multi-functions (beneficials, poll., wildlife)
- Special note*: native vs exotic plant use

Must have something that works!

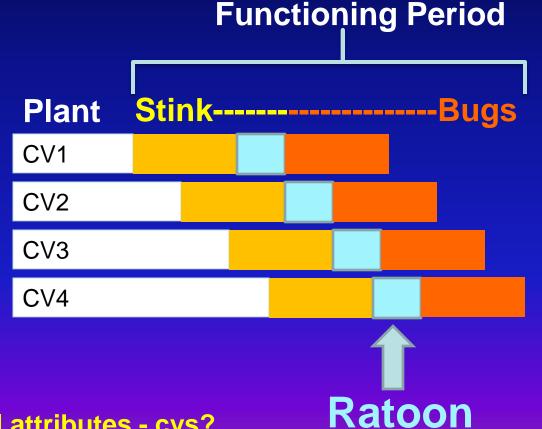
Trap Crop Specifics Central & South Florida?

Fall-Spring:

- Triticale (crimson clover, h or c vetch (F)- NE)
- Sunflower, buckwheat (Sp), barnyard grass
- Others citrus related, winter crops

Spring-Fall

- Sorghum, millets, sunflower, buckwheat
 barnyard grass, field peas, okra (pots?),
- Maturity times multiple CVs
- Ratoon after heading
- Use multiple tactics



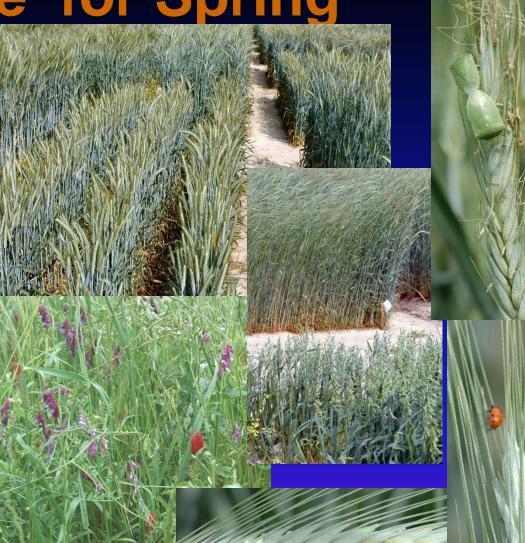
Trap Crop Novel Features

- Ratooning = Mowing (like okra in Dade)
 - -At strategic time
 - -All plant species <u>NOT</u> amenable
 - Saves plantings by extending efficacy
 - -Saves \$\$ less input time & costs
 - -Negative: same location double cropping

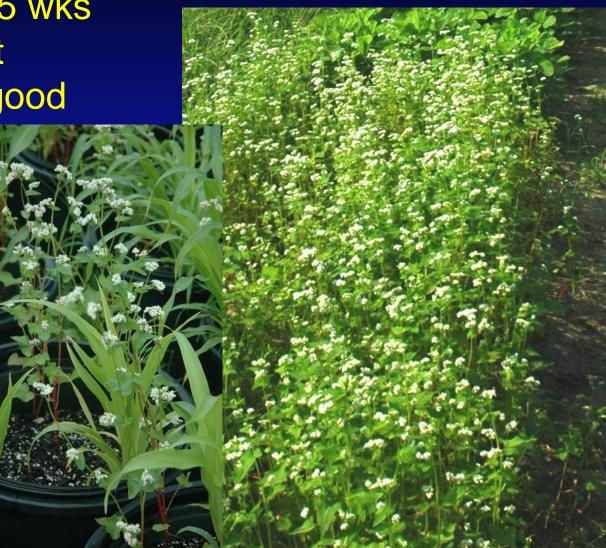
How to Exploit Sorghum Maturity Range & Ratooning

Physical attributes - cvs? Height, color, etc.

The Foundation for The Gator Nation


Trap Crops Farm Scale and Philosophy Neutral

Where do you place them **Example 2** relative to the cash crop for interception?


Triticale for Spring

- Fall, early spring planting
 Range in hgt, phenology -cvs
 Beneficials
 All 4 bug species +
 Ratoons
 Hairy/common vetch +
- crimson clover = beneficials **Beneficials=
- natural enemies, pollinators

Buckwheat

Cheap, easy
Fast maturing – 4-5 wks
Ratoon, easy plant
Soil temp, frost – good
All 4 species +
Organic crop
"RELAY" crop
Beneficials!!

Sorghum

Maturity- 70-90 days
Soil temp & frost -kills
Ratoons well
Germplasm – variable
All 4 species +
Beneficial
Pots
Organic

Pearl Millet

Cheap, easy
Low soil temp & frost - bad
Ratoons
70-90 days to maturity
Beneficials
Pots
Germplasm- variable
Organic crop
All 4 species +

Sunflower

Cheap, easy
Low soil temp & frost - good
Beneficials!!!!!
Containers
Germplasm- variable
Organic crop, biodiesel
Ratoon- no

Japanese Millet: 'Barnyardgrass' Echinochloa crus-galli

Cheap, easy
Maturity 6-7 weeks
Beneficials
Containers
Germplasm
All 4 species +
Short attraction time
3-4' in height
Can be invasive - aquatic

Other Species w/Potential? Field Peas & Okra

Field Peas

- Cheap easy
- Extrafloral nectaries
- Previous work+
- Height-short; trellis?
- Cultivars

Okra: (containers) •Cheap, must manage! •Beneficials, EFN •Rootknot nematodes neg. •Ratoons

Other Species w/Potential? Hemp Sesbania (Y/N?), Hairy Indigo, Crotolaria – (N)

Hemp Sesbania: ?? •Height – tall - barrier •Not all SB species •*Oebalus* spp. •Invasive Hairy indigo – weedy, nematode suppressor+

Showy Crotalariapoisonous to cattle

Other Species w/Potential? Browntop Millet – No; Wildlife

Japanese

- Cheap, easy
- Doesn't last long
- 5-6 weeks
- Height short
- Attracts beneficials, pollinators
- +Oebalus spp.Weedy invasive

Containers for Portability, Visual/chemical Cues Enhance

Yellow trap –Attraction - 4X increase in *H. axyridis*

the part of the second the second

Trap Crop Summary Fall-Spring:

- Triticale (crimson clover, hairy vetch) (F)
- Sunflower, buckwheat (Sp), field peas, okra Spring-Fall
- Sorghum, millet, sunflower, buckwheat
 - okra, field peas, others
- Multiple species and cultivars
- Ratoon after heading
- Portable containers, greenhouse starts
- Remove pests: by hand, vacuum or spray
- Add in other tools: traps, pheromones, BC, etc.

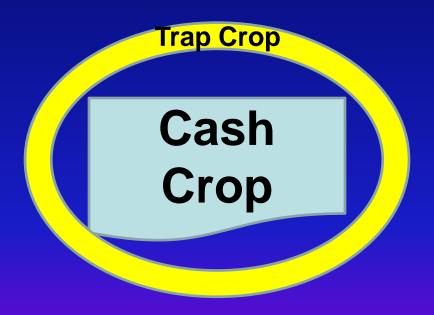
Some Other Ideas

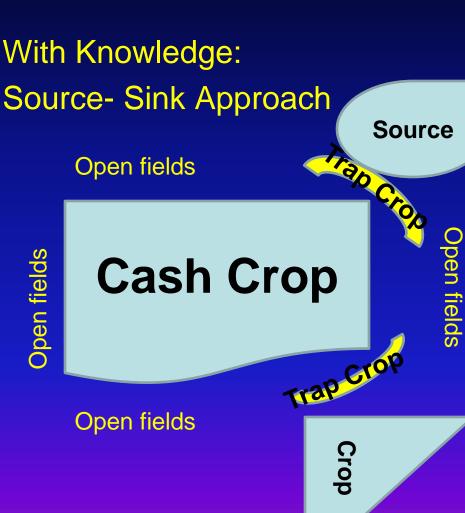
Physical properties, barriers:

- Height
 <u>-trap crop via cultivar selection</u>
- Configuration of plants
 - short to tall toward cash crop
 - density of trap crop plants
- Trellis of vines like field peas 1 height
- Exploit visual components
 - Use of visual repellent UV mulch
 - Use best colored cultivar
- Artificial materials netting, etc.

Brown Marmarated Stink Bug

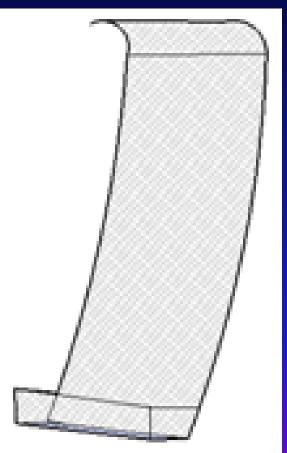
- Invasive pest, like few others!
- Double whammy plants and buildings
- Major research efforts underway in conventional and organic
- Trap crops: are being developed and tested. Look to have promise.
- Various cucurbits and others? TBD




Trap Crop Spatial Orientation Interplanting- NO!!! Edge Interception – Yes!

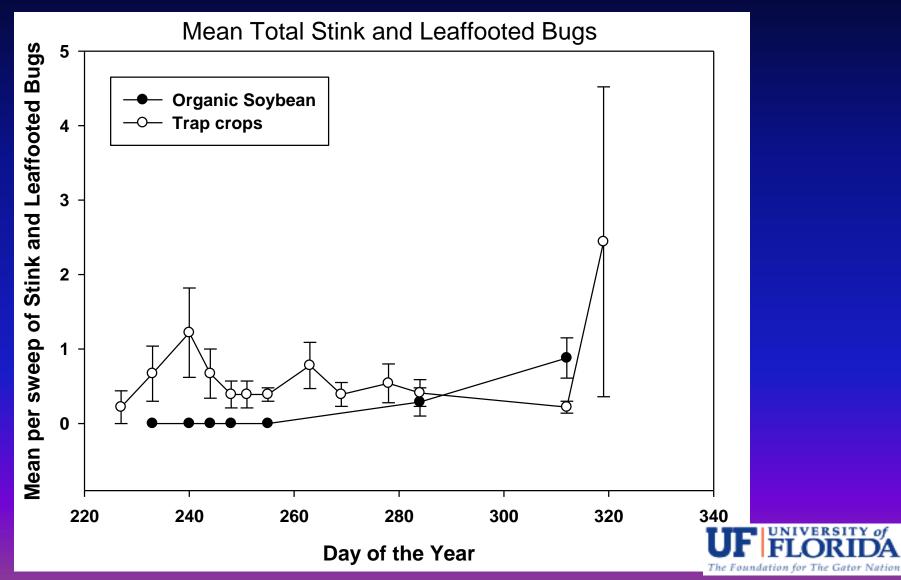
Spatial Configurations Aerial Plats

Unknowns Default – Ring It


Plot size: one tractor implement width

Management in the Trap Crop

- Insecticides ?
- Mechanical
 - by hand
 - sweep net
- Vacuum device
- Blower catcher



blower

Trap Crop Efficacy, Edge of Organic Soybean

Research: <u>Multifunctional</u> Plots Augment Ecological Services

		Season of	Ecological Service				
			Flowers, Nectar ¹ , Pollen, Fruit and Seeds for:				Trapping
Plant Species	Common Name	Service	Pollinators	Beneficial Insects ²	Butterflies	Wildlife	Stink and Leaffooted Bugs
Trees		•					_
Callistemon <u>viminalis</u>	Weeping bottlebrush	Wi-Sp	Х	Х	Х	Х	
Cercis canadensis	Redbud	Sp-Su	Х			Х	
Cornus florida	Dogwood	Sp				Х	
Ilex opaca	American holly	Su-Fa	Х	Х		Х	
Lagerstroemia indica/faurei	Crapemyrtle	Su- <u>Fa</u>	Х	Х	X		
Malus angustifolia	Crabapple	Su-Fa	Х	Х		Х	
Osmanthus fragrans	Tea olive	Wi-Sp	Х				
Prunus persica	Peach1	Sp	Х	Х	X	Х	
Prunus sp.	Wild Plum, plum ¹	Sp-Su	Х	Х		Х	
Shrubs					•		
Abelia sp.	Glossy abelia	Su-Fa	Х		X		
Camellia spp.	Camellia	Wi-Sp	Х	Х			
Cliftonia monophylla	Buckwheat tree ³	Sp	Х			Х	
Fatsia japonica	Japanese aralia	Fa-Wi	Х	Х	X		UNIVERSITY of
Lonicera fragrantissima ^c	Win. honeysuckle	Wi-Sp	Х			X	JF FLORIDA

Thank You!

Questions ufinsect.ifas.ufl.edu rfmizell@ufl.edu

