Skip to main content
UF Institute of Food and Agricultural Sciences logo
Give      University of Florida
Resources
    Toggle Search Form
    GIVE UNIVERSITY OF FLORIDA
    • HOME
    • RESEARCH
    • TEACHING
    • OUTREACH
    • MEMBERS
    • PUBLICATIONS
    • PHOTOS
    • CONTACT

    Plant And Root Biology Lab

    Plant And Root Biology Lab

    Publications

    Authors in bold are/were members of the Plant and Root Biology Laboratory.

    1. Li, X.; Ayub, M.A.; Fox, J.-P.; Shen, S.; Rossi, L. 2024. Nutrient uptake, growth, and physiology of Chinese cabbage (Brassica rapa L. ssp. pekinensis) varieties under NaCl stress. Soil & Environment 43 (1): 1-13. https://doi.org/10.25252/SE/2024/243362  
    2. Chinyukwi, T.; Kadyampakeni, D.; Rossi, L. 2024. Optimization of macronutrient and micronutrient concentrations in roots and leaves for Florida HLB-affected sweet orange trees. Journal of Plant Nutrition, 47:2, 226-239, https://doi.org/10.1080/01904167.2023.2275068  
    3. Santiago, J.M.; Hallman, L.M.; Fox, J.-P.; Pitino, M.; Shatters, R.G.; Cano, L.M.; Rossi, L. 2023. Impacts of oak mulch amendments on rhizosphere microbiome of citrus trees grown in Florida flatwood soils. Microorganisms 11(11), 2764; https://doi.org/10.3390/microorganisms11112764  
    4. Kadyampakeni, D.M.; Chinyukwi, T.; Kwakye, S.; Rossi, L. 2023. Varied macro- and micronutrient fertilization rates impact root growth and distribution and fruit yield of huanglongbing-affected Valencia orange trees. HortScience, 58(12), 1498-1507; https://doi.org/10.21273/HORTSCI17372-23  
    5. Hallman, L.M.; Santiago, J.M.; Fox, J.-P.; Pitino, M.; Shatters, R.G.; Rossi L. 2023. Use of hardwood mulch applications to improve soil characteristics of Alfisols used in Florida citrus production. Frontiers in Soil Science 3. https://doi.org/10.3389/fsoil.2023.1200847  
    6. Hallman, L.M.; Kadyampakeni, D.M.; Ferrarezi, R.S.; Wright, A.L.; Ritenour, M.A.; Rossi, L. 2023. Uptake of micronutrients in severely HLB-affected grapefruit trees grown on Florida Indian River flatwood soils. Journal of Plant Nutrition; https://doi.org/10.1080/01904167.2023.2221287
    7. Lesmes-Vesga, R.A.; Cano, L.M.; Chaparro, J.X.; Ritenour, M.A.; Sarkhosh, A.; Rossi, L. 2023. Variation in the root system architecture of peach × (peach × almond) backcrosses. Plants 12(9), 1874; https://doi.org/10.3390/plants12091874
    8. Santiago, J.M.; Kadyampakeni, D.M.; Fox, J.-P.; Wright, A.L.; Guzman, S.M.; Ferrarezi, R.S.; Rossi, L. 2023. Grapefruit root and rhizosphere responses to varying planting densities, fertilizer concentrations and application methods Plants 12(8), 1659; https://doi.org/10.3390/plants12081659
    9. Ayub, M.A.; ur Rehman, M.Z.; Ahmad, H.R.; Rico, C.M.; Abbasi; G.H.; Umar; W.; Wright, A.L.; Nadeem, M.; Fox, J.-P.; Rossi, L. 2023. Divergent effects of cerium oxide nanoparticles alone and in combination with Cd on nutrient acquisition and growth of maize (Zea mays). Frontiers in Plant Science. Vol. 14; https://doi.org/10.3389/fpls.2023.1151786  
    10. Santiago, J.M.; Fox, J.-P.; Guzmán, S.M.; Rossi, L. 2023. Effect of fabric mulch ground covers on lemon trees rhizosphere microbiome in Florida flatwood soils. Frontiers in Soil Sciences. Vol. 3; https://doi.org/10.3389/fsoil.2023.1110370
    11. Ayub, M.A.; ur Rehman, M.Z.; Ahmad, H.R.; Fox, J.-P.; Clubb, P.; Wright, A.L.; Anwar-ul-Haq, M.; Nadeem, M.; Rico, C.M.; Rossi, L. 2023. Influence of ionic cerium and cerium oxide nanoparticles on Zea mays seedlings grown with and without cadmium. Environmental Pollution 322: 121137; https://doi.org/10.1016/j.envpol.2023.121137
    12. Hallman, L.M.; Kadyampakeni, D.M.; Fox, J.-P.; Wright, A.L.; Rossi L. Root-Shoot nutrient dynamics of huanglongbing-affected grapefruit trees. Plants 11(23), 3226; https://doi.org/10.3390/plants11233226
    13. Martin-Zapien, J.M.; Castle, W.S.; Gmitter, F.G.; Grosser, J.W.; Ferrarezi, R.S.; Rossi, L. 2022. Early performance of recently released rootstocks with grapefruit, navel orange, and mandarin scions under endemic huanglongbing conditions in Florida. Horticulturae 8(11), 1027; https://doi.org/10.3390/horticulturae8111027
    14. Hallman, L.M.; Kadyampakeni, D.M.; Ferrarezi, R.S.; Wright, A.L.; Ritenour, M.A.; Johnson, E.G.; Rossi, L. Impact of ground applied micronutrients on root growth and fruit yield of severely huanglongbing-affected grapefruit trees. Horticulturae 8(9), 763; https://doi.org/10.3390/horticulturae8090763
    15. Arnoldi, M.; Duren E.B.; Avery, P.B.; Rossi, L. Assessing the endophytic potential of a commercially available entomopathogenic Beauveria bassiana strain in various citrus rootstocks. Applied Microbiology 2(3), 561-571; https://doi.org/10.3390/applmicrobiol2030044
    16. Lesmes-Vesga, R.A.; Cano, L.M.; Ritenour, M.A.; Sarkhosh, A.; Chaparro, J.X.; Rossi L. 2022. Rhizoboxes as rapid tools for the study of root systems of Prunus seedlings. Plants 11(16), 2081; https://doi.org/10.3390/plants11162081
    17. Lesmes-Vesga, R.A.; Cano, L.M.; Ritenour, M.A.; Sarkhosh, A.; Chaparro, J.X.; Rossi, L. 2022. Rootstocks for commercial peach production in the southeastern United States: current research, challenges, and opportunities. Horticulturae 8(7), 602; https://doi.org/10.3390/horticulturae8070602
    18. Rossi L., Hallman L.M., Santiago J.M. 2021. Citrus root and rhizosphere dynamics in the age of HLB. Annual Plant Review online: 4(2) 605-624 https://doi.org/10.1002/9781119312994.apr0769
    19. Lesmes-Vesga R.A., Chaparro J.X., Sarkhosh A., Ritenour M.A., Cano L.M., Rossi L. 2021. Effect of propagation systems and indole-3-butyric acid potassium salt (K-IBA) concentrations on the propagation of peach rootstocks by stem cuttings. Plants 10(6), 1151; https://doi.org/10.3390/plants10061151
    20. Hoffman W.A., Rodrigues A.C., Uncles N., Rossi L. 2021. Hydraulic segmentation does not protect stems from acute water loss during fire. Tree Physiology, https://doi.org/10.1093/treephys/tpab057
    21. Chang Y., Rossi L., Zotarelli L., Gao B., Sarkhosh A. 2021. Biochar improves soil physical characteristics and strengthen root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture. https://doi.org/10.1186/s40538-020-00204-5
    22. Chang Y., Rossi L., Zotarelli L., Gao B., Sarkhosh A. 2021. Greenhouse Evaluation of Biochar Effect on Nutrient Status and Physiological Performance in Muscadine Grape (Vitis rotundifolia L.). HortScience. https://doi.org/10.21273/HORTSCI15428-20
    23. Doherty E., Avery P., Duren E., Cano L., Rossi L. 2021. In planta Localization of Endophytic Cordyceps fumosorosea in Carrizo Citrus. Microorganisms. https://doi.org/10.3390/microorganisms9020219
    24. Fox J.-P., Capen J., Zhang W., Ma X., Rossi L. 2020. Effects of cerium oxide nanoparticles and cadmium on corn (Zea mays L.) seedlings physiology and root anatomy. NanoImpact: https://doi.org/10.1016/j.impact.2020.100264
    25. Rossi L., Hallman L., Adams N., Ac-Pangan W. 2020. Impact of a Soil Conditioner Integrated into Fertilization Scheme on Orange and Lemon Seedling Physiological Performances. Plants 2020, 9(7), 812; https://doi.org/10.3390/plants9070812
    26. Shahid M., Sarkhosh A., Khan N., Balal R., Ali S., Rossi L., Gómez C., Mattson N., Nasim W., Garcia-Sanchez F. 2020. Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy 2020, 10(7), 938; https://doi.org/10.3390/agronomy10070938
    27. Pitino M., Sturgeon K., Dorado C., Cano L.M., Manthey J.A., Shatters R.G., Rossi L. 2020. Quercus leaf extracts display curative effects against Candidatus Liberibacter asiaticus that restore leaf physiological parameters in HLB-affected citrus trees. Plant Physiology and Biochemistry, DOI: https://doi.org/10.1016/j.plaphy.2020.01.013
    28. Lombardini L., Rossi L. 2019. Ecophysiology of Plants in Dry Environments. In: D'Odorico P., Porporato A., Wilkinson Runyan C. (eds) Dryland Ecohydrology. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-23269-6_4
    29. Adams S., Ac-Pangan, W., Rossi L. 2019. Effects of Soil Salinity on Citrus Rootstock 'US-942' Physiology and Anatomy. HortScience https://doi.org/10.21273/HORTSCI13868-19
    30. Rossi L., Bagheri M., Zhang W., Burken J., Ma X. 2019. Using the Artificial Neural Network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake in Brassica napus Environmental Pollution, https://doi.org/10.1016/j.envpol.2018.12.029
    31. Rossi L., Fedania L., Sharifan H., Ma X., Lombardini L. 2019. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants, Plant Physiology et Biochemistry, DOI: https://doi.org/10.1016/j.plaphy.2018.12.005
    32. Shahid M.A., Balal R.M., Khan M.N., Rossi L., Rathinasabapathi B., Liu G., Khane J., Cámara-Zapata J.M., Martínez-Nicolas J.J., Garcia-Sanchez F. 2018. Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks. Environmental and Experimental Botany, DOI: https://doi.org/10.1016/j.envexpbot.2018.09.015
    33. Rossi L., Cao Z., Stowers C., Zhang W., Lombardini L., Ma 2018. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture contents. Environmental Science and Pollution Research, DOI: https://doi.org/10.1007/s11356-017-0501-5
    34. Rossi L., Sharifan H., Zhang W., Ma X. Mutual effects and in-planta speciation of cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max (L.) Merr.). Environmental Science: Nano, DOI: 10.1039/C7EN00931C
    35. Stower C., King M., Rossi L., Zhang W., Ma X. 2018. Initial sterilization of soil affected the interactions of cerium oxide nanoparticles and soybean seedlings (Glycine max (L.) Merr.) in a greenhouse study. ACS Sustainable Chemistry & Engineering, DOI: 1021/acssuschemeng.8b01654
    36. Cao Z., Stowers C., Rossi L., Zhang W., Lombardini L., Ma 2017. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environmental Science: Nano, DOI: 10.1039/C7EN00015D
    37. Rossi L., Zhang W., Ma X. 2017. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus by modifying the formation of root apoplastic barriers. Environmental pollution, DOI: https://doi.org/10.1016/j.envpol.2017.05.083.
    38. Rossi L., Borghi M., Yang J., Xie D. Overexpression of Populus × canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism. Journal of Plant Physiology, DOI: https://doi.org/10.1016/j.jplph.2017.06.005
    39. Rossi L., Zhang W., Schwab A., Ma X. Uptake, accumulation and in-planta distribution of co-existing cadmium and cerium oxide nanoparticles in Glycine max (L.) Merr. Environmental Science & Technology, DOI: 10.1021/acs.est.7b03363
    40. Xi J., Rossi L., Lin X., Xie D. Metabolic conversion of isoprene wasted by Camelina sativa to plant growth and storage metabolites via a synthetic insect-plant geranyl diphosphate synthase gene. Planta, DOI:10.​1007/​s00425-016-2504-8
    41. Ma X., Wang Q., Rossi L., Ebbs SD., White JC. Multigenerational exposure to cerium oxide nanoparticles: Physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa. Nanoimpact, DOI: http://dx.doi.org/10.1016/j.impact.2016.04.001
    42. Rossi L., Borghi M., Francini A., Lin X., Xie D., Sebastiani L. Salt stress induces metabolic and gene-expression changes in salt-tolerant and salt-sensitive Italian olive trees (Olea europea L.) cultivars. Journal of Plant Physiology, http://dx.doi.org/10.1016/j.jplph.2016.07.014
    43. Rossi L., Zhang W., Lombardini L., Ma X. 2016. Cerium oxide nanoparticles alleviated salt stress in Brassica napus by enhancing photosynthetic mechanisms. Environmental Pollution, DOI: http://dx.doi.org/10.1016/j.envpol.2016.09.060
    44. Rossi L., Francini A., Minnocci A., Sebastiani L. Salt stress modifies apoplastic barriers in olive (Olea europaea L.): a comparison between a salt-tolerant and a salt-sensitive cultivar. Scientia Horticulturae 192: 38-46, DOI: 10.1016/j.scienta.2015.05.023
    45. Ma X., Wang Q., Rossi L., Zhang W. Cerium oxide nanoparticles and bulk cerium oxide lead to different physiological and biochemical adjustments in Brassica rapa. Environmental Science & Technology, DOI: 10.1021/acs.est.5b04111
    46. Rossi L., Sebastiani L., Tognetti R., D’andria R., Morelli G., Cherubini P. Different irrigation regimes induce changes in vessel sizes in olive trees (Olea europaea L.) from Southern Italy. Acta Horticulturae 1038: 455-461. DOI: http://dx.doi.org/10.17660/ActaHortic.2014.1038.56
    47. Rossi L., Sebastiani L., Tognetti R., D’andria R., Morelli G., Cherubini P. Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive tree under different water availability. Plant and Soil, 372: 567-579, DOI: 10.1007/s11104-013-1759-0
    University of Florida Logo
    Contact

    Feedback
    Plant And Root Biology Lab
    2199 South Rock Road, Fort Pierce, FL 34945-3138
    (772) 577-7341

    Land Grant Mission
    • Teaching
    • Research
    • Extension
    Information
    • Ask IFAS (EDIS)
    • UF/IFAS Experts
    • UF/IFAS Blogs
    • UF/IFAS Bookstore
    Policy
    • Accessible UF
    • EEO Statement
    • IFAS Web Policy
    • SSN & UF Privacy
    • Analytics (Google Privacy)

    © 2025 University of Florida, IFAS Last Modified:Fri, 19 Jul 2024 09:30:18 EDT