

Peach Disease Management Overview for Florida

2022 Peach Field Day, PSREU, Citra, FL

UF UNIVERSITY *of* **FLORIDA**

IFAS Extension

Wardatou Boukari, Ph.D. Post Doctoral Associate

&

Philip F. Harmon, Ph.D. Professor and Extension Specialist UF/IFAS Plant Pathology Department

Overview

Diseases challenges at all stages of production

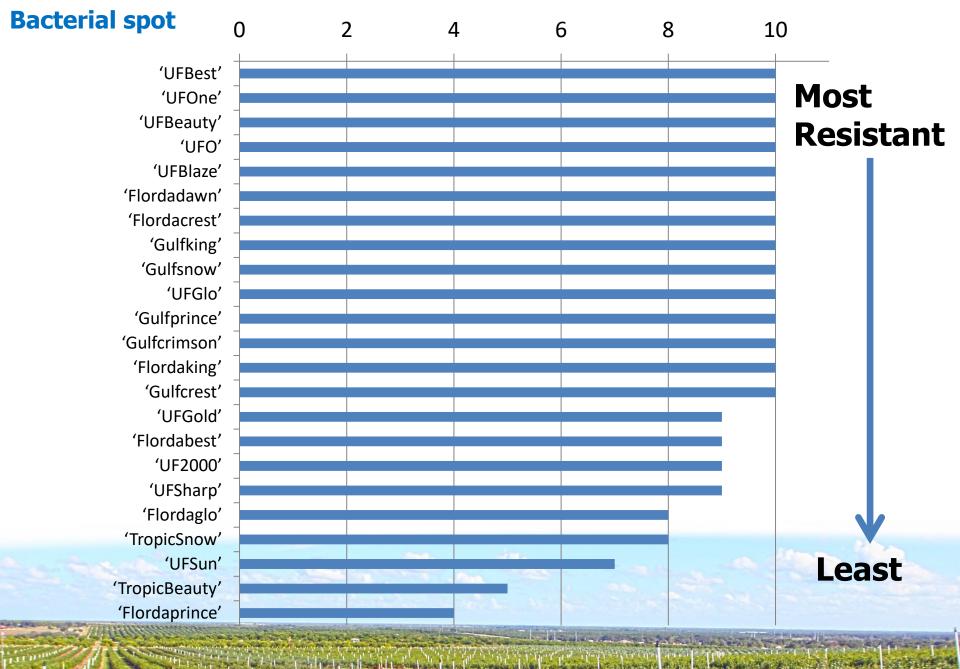
- Plant propagation considerations
- Dormant to bud swell
- Bloom to petal fall
- Shuck split to 14 day pre harvest
- Harvest
- The rest of the year
 - Late spring through summer
 - Summer through winter/ "dormancy"

IPM Guide

2022 SOUTHEASTERN PEACH, NECTARINE, AND PLUM PEST MANAGEMENT AND CULTURE GUIDE

Auburn University Wheeler Foshee Mike Patterson Ed SikoraUniversity of Florida Pete Anderson Phil HarmonUniversity of Georgia Brett Blaauw Phil Brannen Dario Chavez Milton TaylorClemson University Juan Carlos Melgar Greg Reighard Guido SchnabelUniversity of Arkansas Aaron Cato Louisiana State University Charlie GrahamUniversity of Georgia Brett Blaauw Phil Brannen Dario Chavez Milton Taylor	North Carolina State University Wayne Mitchem Mike Parker David Ritchie Jim Walgenbach University of Tennessee David Lockwood Zachariah Hansen	Texas A&M University Jim Kamas Monte Nesbitt Kevin Ong USDA-ARS, Byron, G/ Chunxian Chen Ted Cottrell Clive Bock

2022 SOUTHEASTERN PEACH, NECTARINE AND PLUM	
MANAGEMENT GUIDE	2
2022 SOUTHEASTERN PEACH, NECTARINE AND FLUM MANAGEMENT GUIDE POISON CONTROL CENTERS SEASONAL "AT A GLANCE" DISEASE CONTROL SCHEDULE EFFECTIVENESS OF DISEASE CONTROL MATERIALS PEACH INSECTICIDE AND MITICIDE CLASSES, HUMAN EXPOSURE	45
SEASONAL "AT A GLANCE" DISEASE CONTROL SCHEDULE	46
EFFECTIVENESS OF DISEASE CONTROL MATERIALS	47
PEACH INSECTICIDE AND MITICIDE CLASSES, HUMAN EXPOSURE	6
RISKS, FINISH AND EFFICACY RATINGS	49
PEACH INSECTICIDE AND MITICIDE CLASSES, HUMAN EXPOSURE RISKS, FINISH AND EFFICACY RATINGS	51
PESTICIDE SAFETY	53
PEST MANAGEMENT STRATEGIES	54
RESISTANCE MANAGEMENT	59
ORCHARD WEED MANAGEMENT STRATEGIES	
HERBICIDE RECOMMENDATIONS	61


NEMATODE CONTROL ON PEACHES	
PEACH TREE SHORT LIFE MANAGEMENT	
VERTEBRATE MANAGEMENT	
EFFECT OF pH ON PESTICIDE ACTIVITY	
EFFECT OF SPRAY WATER pH ON PEACH PESTICIDES	
SPRAYER CALIBRATION	
ALTERNATE ROW MIDDLE SPRAYING	
PEST MANAGEMENT FOR NON-BEARING TREES	
GIRDLING	
ANNUAL FERTILIZATION OF BEARING TREES	
NOTES	

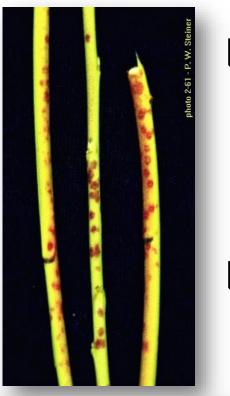
Bacterial spot Caused by Xanthomonas arboricola pv. pruni. **D**Peach varieties vary in their susceptibility

Florida Peach and Nectarine Varieties, EDIS

Bacterial spot management

Dormant copper applications

- Peaches are sensitive to copper, follow label rates, and consult the SE guide for precautions
- Some copper products are also options for organic production
- Oxytretracycline at shuck split
 - Mycoshield
 - FireLine


Leaf Curl

- Taphrina deformans
- Occurs sporadically
- Fungicide applications can control it where it occurs regularly

 Two dormant apps of Ferbam give good control, Ziram, Thiram, Bravo, copper may also give control

- Caused by *Cladosporium carpophilium*
- Symptoms: spots on fruits and twigs □Affects fruit quality
- **•** Management:
 - □Organic options include weekly sulfur and/or reduced rates of copper
 - Brave app(s) through shuck split
 - Captan every 14d after shuck split
 - Abound (or similar) can be substituted for a Bravo or Captan apps

Blossom blight and **brown rot**

- Both caused by *Monilinia fruticola*
- Usually not an issue at bloom in Florida
- Only consider these management options if it an concern:
 - Bloom up until shuck split apps of Bravo
 - Bloom through harvest apps of Captan
 - Reduced rates of Copper for organic production (SE guide)

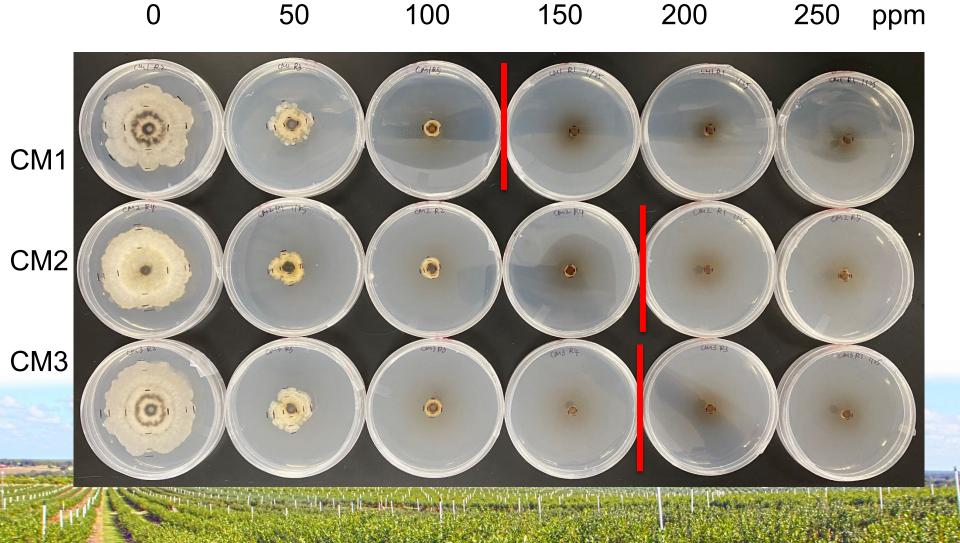
Brown rot

□Sporadic issue more common in north FL than farther south

□Management

- Pre-harvest applications of multiple fungicides
 - 2 weeks and just before harvest where the disease has been an issue
 - Merivon, Luna Sensation > Pristine
 - Orius, Indar, Quash (fungicide resistance likely)
 - Organic option is continued sulfur

In-vitro assays with pure EO products


- Three Monilinia fructicola isolates
- Five replications per EOs concentrations and per isolate
- Relative fungal growth at each EO concentration was calculated in relation to fungal growth on nonamended control plates

Compound	Selected EO concentrations (µl.L ⁻¹)
Thyme Oil	0 - 50 - 100 - 150 - 200 - 250
Oregano Oil	0 - 50 - 100 - 150 - 200 - 250

Selected EOs concentrations range for *in vitro* screening tests

Thyme oil set: FL *Monilinia* isolates (Day 6)

Oregano oil set: FL *Monilinia* isolates (Day 6)

150

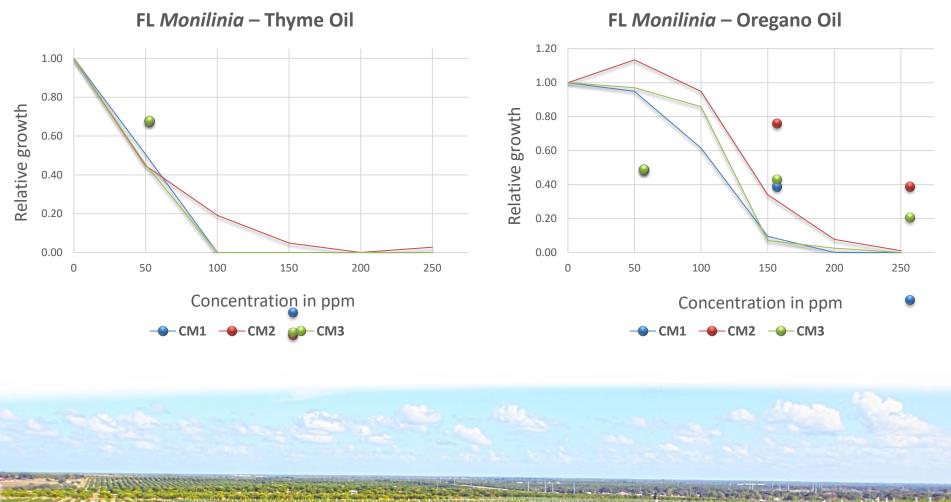
200


250

ppm

100

50


 $\mathbf{0}$

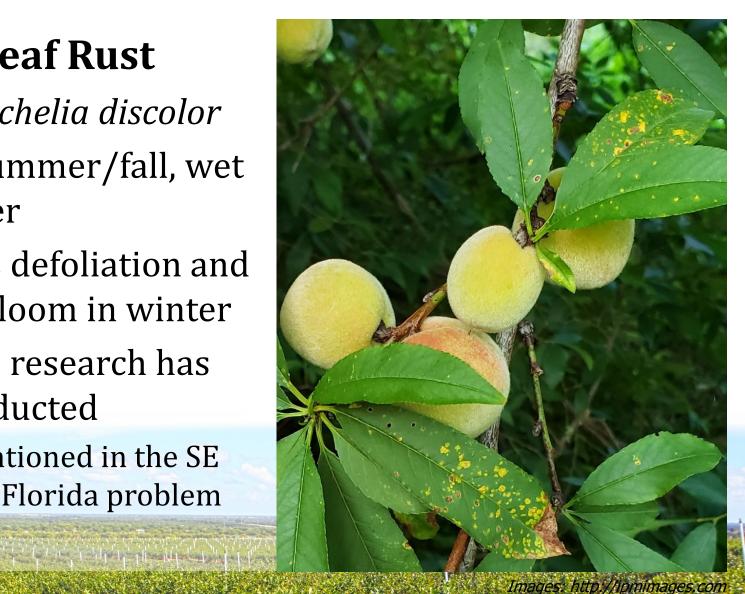
The second se

Relative growth of *Monilinia* from FL isolates

In-vitro assays with formulated EO product

- Three *M. fructicola* isolates used
- Five replications per EOs concentrations and per isolate
- Relative fungal growth at each EO concentration was calculated in relation to fungal growth on nonamended control plates

		Label				
Product	[Conc]	High rate	Low rate			
Thyme Guar	d 23%oil	1150 µl.L ⁻¹	287.5 μl.L ⁻¹			
Compound	Selected EC) concentra	tions (µl.L ⁻¹)			
Thyme Guard	0 - 72 - 143	.75 – 287 –	575 - 1150			
Selected EOs concentrations range for <i>in vitro</i>						
A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE	screenin	g tests	Real States			


Thyme Guard set: FL Monilinia isolates (Day 6)

72 144 287 575 1150 ppm 0 CM1 CM2 CM3

Peach Leaf Rust

- Tranzschelia discolor
- Late summer/fall, wet weather
- Causes defoliation and early bloom in winter
- □ Not much research has been conducted
 - Not mentioned in the SE guide, a Florida problem

Peach Rust Management

□Need to keep leaves on as long as possible

- Growth, develop fruit buds for next season
- Controlled with fungicides
- □Fungicides with efficacy include:
 - Abound and other QoIs
 - Orius, Quash, Indar, Orbit, Topguard and other DMIs
 - Bravo (5 to 6 apps per season total) and Captan (8 to 10 apps total per season)
 - Organic options include copper and sulfur

Peach Rust Management

Post harvest foliage and tree management

- Leaf rust is most important and can result in defoliation and may require fungicide applications
- Avoid overhead irrigation, manage canopies and
 weeds to promote air
 movement

□Fungal Gummosis

- Botryosphaeria dothidea
- Amber colored sap oozes from cankers under bark

 Flordaguard rootstock is highly susceptible

□Management

- Fungicide applications (Captan) to trunk early (yrs 1-3) may help
- Reduce stress, sanitation

Mushroom Root Rot

- Armillaria spp., infect a wide range trees
- First symptoms range from a slow, gradual decline to rapid death
- Slow death of the tree in the aboveground parts is the most common

Phony Peach Disease (PPD)

caused by *Xylella fastidiosa*

□ Can be transmitted by grafting

- Spread primarily by a type of leafhopper known as sharpshooters
- Insects are commonly found in Florida in association with weeds, shrubs, and trees that serve as reservoirs for *X*.
 fastidiosa

Symptoms can develop as late as 18 months or more after initial infection

Symptoms

- Dwarfing, flattened tree canopy:
 - Compact and umbrella-like due to shortened internodes
- Early bloom and fruit set and reduced fruit size
- Fruit may be more colorful and will often ripen a few days earlier than normal

□ 80-90% reduction in production

- Trees that develop Phony Peach Disease (PPD) before bearing age never become productive
- PPD does not kill, but may make trees more susceptible to other diseases and arthropods

Management

- □There is no cure for PPD or any other disease caused by *X. fastidiosa*
- **Q**Rogue trees once confirmed PPD
- □ Manage weeds
- Replanting in a PPD orchard not likely to be successful

Any Questions?
 Please contact Philip
 Harmon at the
 University of Florida
 pfharmon@ufl.edu

EFFECTIVENESS OF DISEASE CONTROL MATERIALS ON PEACHES, NECTARINES AND PLUMS IN THE

SOUTHEAST (+++++ = superior; +++++ = excellent, ++++ = good, +++ = fair, ++ = poor, + = suppression, - = no benefit)

See IPM Management Guide section for rate/disease particulars. These ratings are benchmarks, actual performance will vary.

Pesticide [MOA CODE]	Class	Leaf curl	Bacterial spot	Blossom blight	Scab	Anthracnose	Red spot	Sooty peach	Brown rot	Rhizopus rot
Abound [11] Gem [11]	QoI (quinone outside inhibitor)	-	-	-	++++ Resistance a threat	++++	-	-	++++ Resistance a threat	-
coppers [M1]	multi-site toxins	+++	+++ Resistance a threat	-	-	-	-	-	-	-
Botran [14]	multi-site toxin	-	-	+	-	-	-	-	+	++
Mycoshield [41] FireLine [41]	antibiotic	-	+++ Resistance a threat	-	-	-	-	-	-	-
captan [M4]	multi-site toxin	-	-	++	++++	+++	-	++	+++	+
Ferbam [M3]	multi-site toxin	+++++	-	-	-	-	+++	-	-	-
Thiram [M3]	multi-site toxin	+++	-	-	-	-	+++	-	-	-
ziram [M3]	multi-site toxin	+++	+	-	+	-	+++	+++	-	-
sulfur [M2]	multi-site toxin	-	-	+	+++	-	-	-	+	-
chlorothalonil [M5]	multi-site toxin	++++	-	++++	++++	-	-	-	-	-
Rovral [2]	dicarboximide	-	-	++++	-	-	++	++	-	-
Orius [3]	DMI (dimethylation inhibitor)	-	-	+++++	-	-	-	-	+++++ Resistance a threat	-
Quash [3]	DMI	-	-	+++++	-	-	-	-	Resistance a threat	-
Indar [3]	DMI	-	-	+++++	++	-	-	-	+++++ Resistance a threat	-
Cevya [3]	DMI	-	-	+++++	++	-	-	-	+++++ Resistance a threat	-
Rally [3]	DMI	-	-	+++	-	-	-	-	+ Resistance a threat	-
Orbit [3] PropiMax [3] Bumper [3]	DMI	-	-	++++	-	-	-	-	++++ Resistance a threat	-
Topguard [3]	DMI	-	-	++++	-	-	-	-	++++ Resistance a threat	-

Pesticide [MOA CODE]	Class	Leaf curl	Bacterial spot	Blossom blight	Scab	Anthracnose	Red spot	Sooty peach	Brown rot	Rhizopus rot
Topsin-M [1] Thiophanate Methyl [1]	MBC (methyl benzimidizole carbamate)	-	-	++++ Resistance a threat	++++ Resistance a threat	-	-	-	+++ Resistance a threat	-
Vangard, Scala [9]	anilinopyrimidine	-	-	++++	-	-	-	-	-	-
Inspire Super [9, 3]	anilinopyrimidine and DMI	-	-	+++++	+++	?	-	-	+++++	?
Inspire Super [9, 3] plus Tilt [3]	Anilinopyrimidine and DMIs	-	-	+++++	+++	++++	-	-	+++++	?
Scholar [12]	phenylpyrrole	-	-	-	-	-	-	-	+++++	++++
Fontelis [7]	SDHI-pyrazole carboxamide	-	-	++++	++	+	-	-	++++ Resistance a threat	+
Merivon [11, 7]	QoI and SDHI- pyrazole	-	-	++++++	++++	++++	-	-	++++++	+++
Luna Sensation [11, 7]	QoI and SDHI - pyridinyl-ethyl- benzamides	-	-	+++++	++++	++++	-	-	++++++	+++
Pristine [11, 7]	QoI and SDHI- pyridine-carboxamide	-	-	+++++	++++	++++	-	-	+++++	+++
Quadris Top [11, 3]	QoI and DMI	-	-	++++	++++	+++	-	-	++++	++

EFFECTIVENESS OF DISEASE CONTROL MATERIALS ON PEACHES, NECTARINES AND PLUMS IN THE SOUTHEAST (continued)

Fungicides with the same MOA CODE, unless multi-site, are NOT appropriate as tank-mixing partners or for alternating as they have similar modes of action and are prone to cross-resistance.

Trade Name	Active Ingredient	Chemical Class	Manufacturer	
1. Fontelis (DPX- LEM17)	Penthiopyrad	SDHI	DuPont	
2. Luna Sensation	Trifloxystrobin + Fluopyram	Strobilurin + SDHI	Bayer	
3. Merivon	Pyraclostrobin + Fluxapyroxad	Strobilurin + SDHI	BASF	
4. Inspire Super	Difenoconazole + Cyprodinil	DMI + AP	Syngenta	
5. Inspire XT	Difenoconazole + Propiconazole	DMI + DMI	Syngenta	
6. Quadris Top	Difenoconazole + Azoxystrobin	DMI + Strobilurin	Syngenta	
7. Topguard	Flutriafol	DMI	Cheminova	
Chemical Standard = Pristine	Pyraclostrobin + Boscalid	Strobilurin + SDHI	BASF	

2200 14 2