Nutrient management of peach orchards

Juan Carlos Melgar Department of Plant and Environmental Sciences

- Consumers demand for high fruit quality standards
- Societal concerns about over-use of inputs
 - Yield is a great concern for growers
 - Fertilizer (and energy) prices on the rise

Reconcile high yield goals with minimal negative impacts on the environment

Published: January 1995

Nitrogen fertilization management in orchards to reconcile productivity and environmental aspects

M. Tagliavini, D. Scudellazi, B. Marangoni & M. Toselli

Fertilizer research **43**, 93–102 (1995) Cite this article

183 Accesses 53 Citations Metrics

Causes and Consequences of Overfertilization in Orchards

in HortTechnology

Authors: Steven A. Weinbaum¹, R. Scott Johnson¹, and Theodore M. DeJong¹

View Less -

¹ Department of Pomology, University of California, Davis. CA 95616-6683.

DOI: https://doi.org/10.21273/HORTTECH.2.1.112b Page Count: 112b–121 Volume/Issue: Volume 2: Issue 1 Article Category: Research Article Online Publication Date: Jan 1992

Fertilizer (N) = f_x (...)

- fertilization management (timing, number of applications)
- crop load/yield
- ripening season
- pruning
- tree age and health
- environmental conditions
- soil health/management

Artificial intelligence and precision agriculture technology

Fertilizer (N) = f_x (...)

- fertilization management (timing, number of applications)
- crop load/yield
- ripening season
- pruning
- tree age and health
- environmental conditions
- soil health/management

(
	May	luno	ludy,	August	Sontombor
	Iviay	June	July	August	September

Nutrient concentration (% D.W.) in fruit Ρ K Ca Mg Ν 0.9 a 0.2 a 2.0 a 0.3 a Early 0.03 Mid 0.6 b 0.2 b 1.4 b 0.03 0.2 a 0.1 b 1.4 b 0.6 b 0.03 0.2 a Late 1111 11111111111

1

11

111111111

Zhou Q and Melgar JC. 2019. J. Plant Nutr. Soi Sci. 182:20

Nutrient allocation (%)

		Ν	Р	К	Са	Mg
Pruning wood	Early	55.7	50.3	43.0	53.9	41.6
	Mid	50.0	45.9	32.4	58.6	36.6
	Late	49.6	44.9	27.4	53.3	32.5
Fruit	Early	-	-	-	-	_
	Mid	27.1	29.3	42.2	1.0	23.4
	Late	27.3	32.5	45.0	1.1	23.7
Fallen leaves	Early	23.2	24.3	29.6	45.5	44.0
	Mid	20.0	22.2	23.3	40.4	38.9
	Late	19.9	18.1	25.5	45.6	42.6

Nutrient allocation (%)

		Ν	Р	K	Са	Mg
Pruning wood	Early	55.7	50.3	43.0	53.9	41.6
	Mid	50.0	45.9	32.4	58.6	36.6
	Late	49.6	44.9	27.4	53.3	32.5
Fruit	Early	-	-	-	-	-
	Mid	27.1	29.3	42.2	1.0	23.4
	Late	27.3	32.5	45.0	1.1	23.7
Fallen leaves	Early	23.2	24.3	29.6	45.5	44.0
	Mid	20.0	22.2	23.3	40.4	38.9
	Late	19.9	18.1	25.5	45.6	42.6

Nutrient allocation (%)

		Ν	Р	K	Ca	Mg
Pruning wood	Early	55.7	50.3	43.0	53.9	41.6
	Mid	50.0	45.9	32.4	58.6	36.6
	Late	49.6	44.9	27.4	53.3	32.5
Fruit	Early	-	-	-	-	-
	Mid	27.1	29.3	42.2	1.0	23.4
	Late	27.3	32.5	45.0	1.1	23.7
Fallen leaves	Early	23.2	24.3	29.6	45.5	44.0
	Mid	20.0	22.2	23.3	40.4	38.9
	Late	19.9	18.1	25.5	45.6	42.6

Resorbed N provide up to 70% of the N requirement of forming fruits and shoots

Potassium concentration in mature and old trees

		2015	2016	2017
Pruning	Mature	0.9 a	0.4 b	0.7 a
wood	Old	0.8 a	0.6 a	0.8 a
Fallen	Mature	1.9 a	2.6 a	2.9 a
leaves	Old	1.6 b	1.6 b	1.7 b

Older trees have an increased potential storage and seem to be more efficient at resorbing nutrients

Zhou Q and Melgar JC. 2020. HortScience 55:560-564

How do environmental conditions affect nutrient remobilization and reserves?

El Niño/La Niña Southern Oscillation

El Niño year

La Niña year

Source: http://www.srh.noaa.gov/jetstream/

"We will ding to the pilling of the temple of our liberties and if we mush fail we will perceb amodet the raises."

What Happens to Peaches When the Chill is Gone?

in

By Edgefield Advertiser on January 24, 2013 · Comments Off on What Happens to Peaches When the Chill is Gone?

CROPS > ORCHARD CROPS

Lack of winter chill temps a concern for fruit growers

Apple growers in Texas, New Mexico and Arizona say winter chill hours, loosely defined as the number of winter hours the temperature lingers between 32 and 45 degrees, are critical in order for trees to bud. Peaches also at risk.

Apples may be in short supply in the Southwest this year following a warmer than usual winter and limited chilling hours.

Effect of <u>delayed senescence</u> in N concentration in reserve tissues during winter

Tissue	Greenhouse	Outside
1-year shoots	1.86***	1.57
2-year shoots	0.97**	0.85
Stem	0.72***	0.61
Below graft union	0.92***	0.73
Large roots	1.77***	1.39
Fibrous roots	2.61	2.29

n = 60-63. Analyzed with analysis of variance (ANOVA)
*** P < 0.001 ** P < 0.01</pre>

Lawrence B and Melgar JC. 2018. Front. Plant Sci. 9:1819

Effect of <u>soil moisture</u> in N concentration in reserve tissues during winter

Tissue	100% ET	50% ET
1-year shoots	1.63	1.80*
2-year shoots	0.86	0.95*
Stems	0.62	0.72***
Below graft union	0.76	0.89***
Large roots	1.48	1.68*
Fibrous roots	2.27	2.64***

n=60-63. Analyzed with analysis of variance (ANOVA) *** P < 0.001 * P < 0.05

Lawrence B and Melgar JC. 2018. Front. Plant Sci. 9:1819

No single formula for sustainable fertilization but all options go through rational fertilization

Acknowledgments

SC Peach Council Southern SARE SC Department of Agriculture **Musser Farm crew** Qi Zhou, Brian Lawrence

Questions?

jmelgar@clemson.edu