

Nematodes Associated with Blackberry

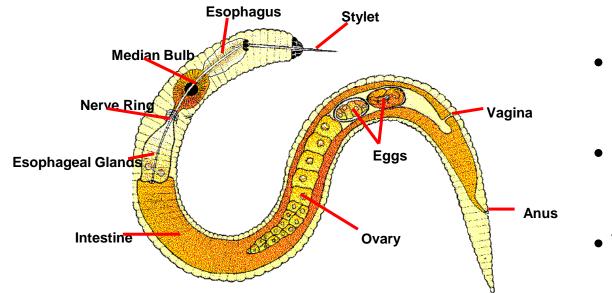
In-Service Training (<u>IST#: 32388</u>)/ May 7, 2025

Johan Desaeger and Hung Bui University of Florida /IFAS – Dept. Entomology and Nematology Gulf Coast Research and Education Center, Wimauma, FL jad@ufl.edu

Nematodes are (microscopic) roundworms Soft, transparent, long and narrow

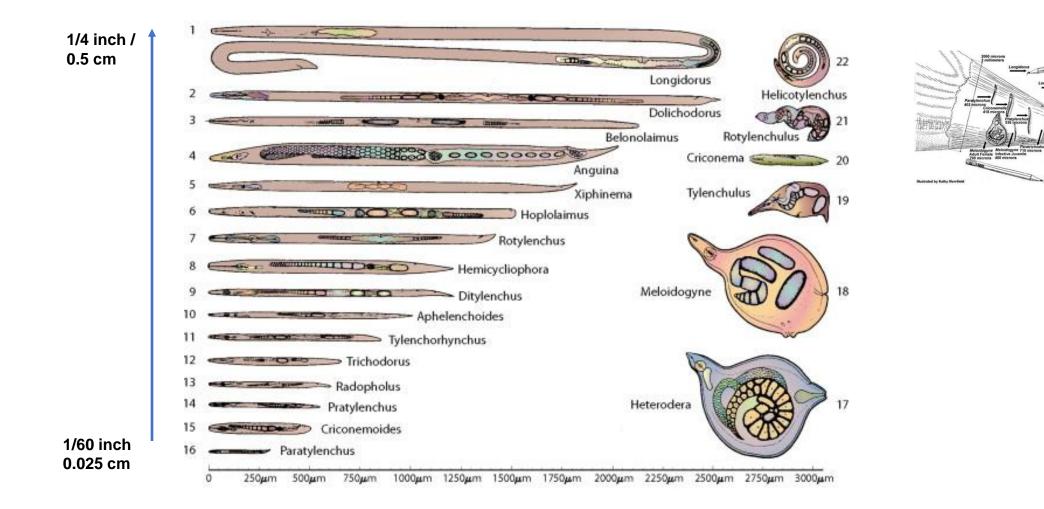
57 billion nematodes for every human

"It's a Nematode World"



Nematodes parasitize every animal and plant

Plant parasitic nematodes cause significant crop damage


• > 100 billion US\$/year

- Indestructible and unpredictable
- Very difficult to manage

Transparent and microscopic ~ long, thin roundworms ('threadworms' or 'eelworms')
At the head is a hollow mouth spear (~ hypodermic needle) called a stylet
Feed by piercing and sucking - Punctures plant cells, withdraws food, secretes protein and metabolites

Relative sizes and body shapes of plant-parasitic nematodes

UF IFAS

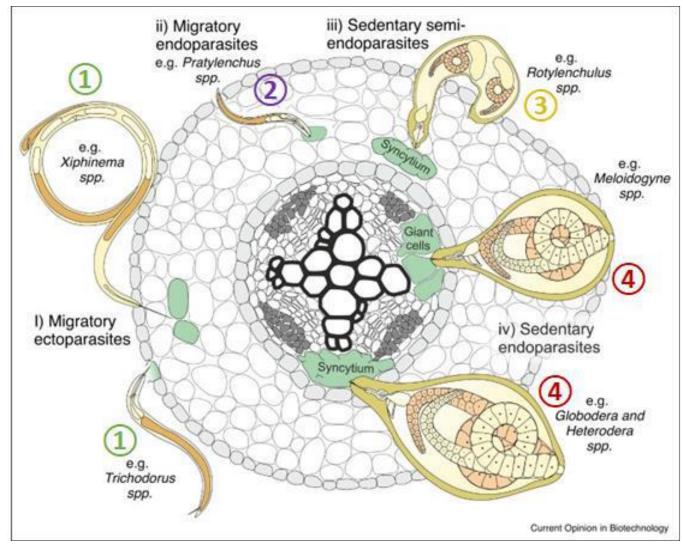
credit Society of Nematologists

Plant-parasitic nematodes that feed aboveground

Leaf nematodes (*Aphelenchoides* spp.) Coconut palm nematodes (*Bursaphelenchus cocophilus*) Pine wilt nematode (*Bursaphelenchus xylophilus*) Seed and gall nematode (*Anguina* spp.) Stem and bulb nematode (*Ditylenchus* spp.) Beech leaf nematode *Litylenchus crenatae*

Root galls, root pruning, stubby roots, hairy roots,

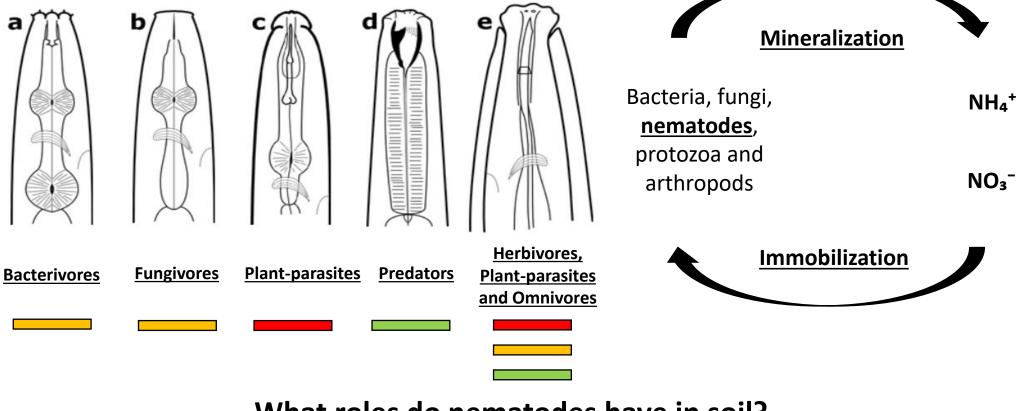
Most plant-parasitic nematodes feed on roots



Nematodes Feed on Roots in Different Ways

- 1 Migratory ectoparasites
- ② Migratory endoparasites
- ③ Semi-endoparasites
- ④ Sedentary endoparasites

also stem, bulb and leave


feeding (not in picture)

UNIVERSITY of FLORIDA

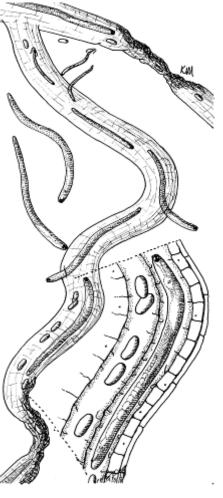
Most soil nematodes are beneficial

What roles do nematodes have in soil?

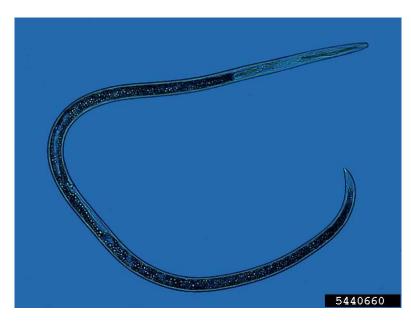
- Nutrient cycling; <u>immobilization</u> and <u>mineralization</u>
- Regulate <u>OM decomposition</u>
- <u>Food source</u> for higher level <u>predators</u>

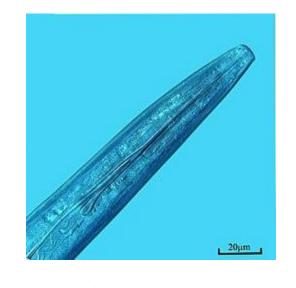
- Regulate microbial populations
- Environmental indicators
- <u>Disease</u> supression and development

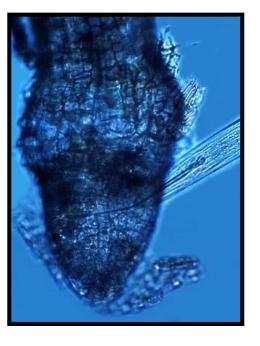
Nematodes on blackberries?


- <u>https://www.uaex.uada.edu/farm-ranch/crops-commercial-horticulture/horticulture/ar-fruit-veg-nut-update-blog/posts/blackberry-nematode-trial.aspx</u>
- Lesion nematodes (*Pratylenchus* spp.) directly impact blackberry by feeding on roots and reducing plant productivity, leading to reduced plant size, fruit quality and yield, while also impacting winter hardiness.
- **Dagger nematodes** (*Xiphinema* spp.) impact blackberry plantings by transmitting several plant viruses which can lead to blackberry yellow vein disease.

Lesion nematodes (*Pratylenchus* spp.) are migratory endoparasitic plant-parasitic nematodes tunnel inside root but move back to soil and into new roots







Dagger nematodes (*Xiphinema* spp.) are ectoparasitic plant-parasitic nematodes

feed outside of root, move cell-to-cell but do not enter root

Xiphinema on grape roots (J. Eisenback)

5442334

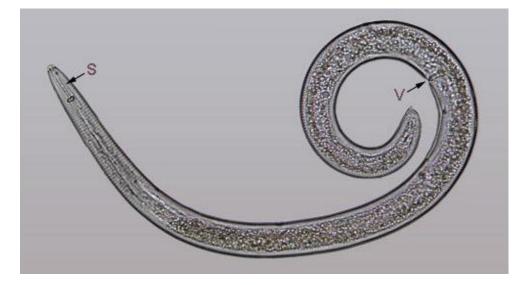
Main nematode of concern in other states: Dagger nematode (*Xiphinema* spp.) can transmit viruses

Nepoviruses like tomato ringspot, tobacco ringspot and grapevine fanleaf viruses

Virus symptoms on a blackberry plant, showing irregular drupelet size and leaf mottling. Picture by Keilah Barney, **University of Arkansas**

Leaves of Viking red currants showing symptoms of Tomato ringspotvirus transmitted by Xiphinema sp. (Joseph Postman, **USDA-ARS, Corvallis, Oregon**)

Symptomatic leaf and blackberries caused by tobacco ringspot virus, **NC State**



Blackberry nematode counts (100 cc soil) from commercial farm in Arkansas (2021-2024)

Field Number	<u>2021</u>				<u>2024</u>					
	<u>Dagger</u>	<u>Lesion</u>	<u>Spira</u> l	<u>Stubby</u>	Non par	<u>Dagger</u>	<u>Lesion</u>	<u>Spira</u> l	<u>Stubby</u>	Non par
Ritter 03	0	8	77	0	431	1154	46	654	0	200
Ritter 18	0	0	38	0	539	647	562	231	38	53
Ritter 36	169	0	938	0	1576	1216	831	393	0	223
Ritter 44	38	8	115	0	446	176	269	131	0	161
Ritter 49	8	15	231	0	792	546	239	46	38	246
Ritter 61	0	38	1046	0	1523	161	323	46	0	184
Ritter 63	85	177	1569	38	1200	585	385	308	0	252
Ritter 68	0	216	231	0	516	469	184	162	77	100
Ritter 70B	46	31	138	0	1085	176	38	38	0	408
Ritter 73	0	38	115	269	785	108	38	239	46	431
Ritter 78	77	38	1262	0	3315	877	0	192	115	439
Ritter 79B	0	0	1185	231	1531	362	385	230	0	685
Ritter 81B	0	0	77	38	792	377	369	1408	77	139
Ritter 82	169	31	1100	0	1384	515	231	38	77	423
Ritter 84	38	0	46	38	1661	400	508	1015	269	269
Ritter 87	0	15	154	0	1354	200	354	615	115	515

What about Florida? First nematode sampling (Dec. 2021, GCREC, Dr. Deng orchard)

Spiral nematode (Helicotylenchus spp.)

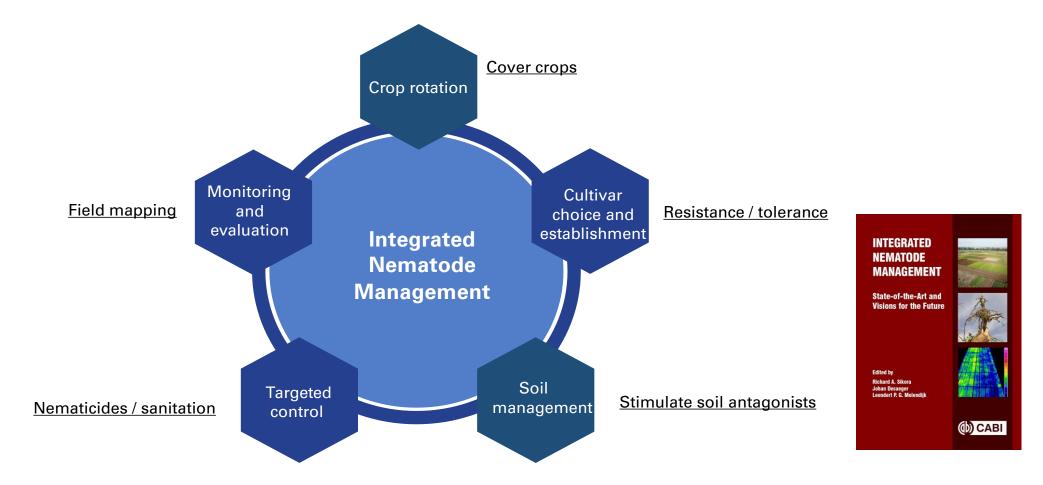
- Only spiral nematodes were found
 - up to 1,300 / 200 cc soil
 - rarely considered a major pest
- No root-knot, sting, lesion nematodes (most damaging nematodes in Florida) were found

Recent sampling (GCREC 2022-25), also sting nematodes found (#/200 cc soil)

Year	Plant age	Symptoms	Root-knot	Sting	Lesion	Spiral	Stubby	Sheath
2022	Older	Some yellowing	0-3	0-12	0	74-1170	0-6	0
2024	Older	None / weedy*	41*	1	5	140	0	0
	Older	Yellowing	2	50	0	1	0	0
	Older	No yellowing	0	0	9	40	0	0
	New plants	Yellowing	0	0	0	0	0	0
	New plants	No yellowing	0	0	0	0	0	0
2025	Older	Yellowing	1	4	0	0	24	4
	Older	Yellowing	0	2	0	0	12	1
	Older	Yellowing	1	21	0	0	6	0

2025 leaf samples were analyzed for nematode-transmitted and common blackberry viruses, but no viruses were detected (Scott Adkins and Sal Lopez, USDA/ARS Ft Pierce)

Sting nematode (Belonolaimus longicaudatus) on strawberry



- Plants won't grow severe root pruning no root growth
- Ectoparasite, feeds on root tips, only in sandy soil (FL native)
- One of the largest plant-parasitic nematodes
- Wide host range (fruits, vegetables, corn, peanut, citrus, turf, ...)

How to best manage plant-parasitic nematodes?

https://www.cabi.org/bookshop/book/9781789247541/

Soil disinfestation before planting

Soil fumigation standard practice in Florida since 1970s for many crops

Simultaneous control of soil-borne pathogens, plant-parasitic nematodes and weeds

Different alternative practices – soil steaming, flooding, solarization, anaerobic soil disinfestation

Soil solarization

- Covering soil with clear plastic 1 month or more
- Irrigate soil before covering with plastic (or after if drip tapes)
- Need clear skies, clouds reduces efficacy
- High temperature (50 C or more) will kill nematodes > mostly effective in top-soil > nematodes move downwards to escape heat

Anaerobic Soil Disinfestation (ASD)

- Biological Soil Disinfestation or Reductive Soil Disinfestation first developed in Japan and the Netherlands (2000) – variation of flooding
- How? 1. Incorporate organic amendments w/ high amounts of labile carbon (molasses, rice bran, ...) - 2. Cover soil with impermeable film that limits gas exchange - 3. Irrigate soil to field capacity – 4. Wait 2-3 weeks and plant

Figure 2. Aerobic and anaerobic conditions

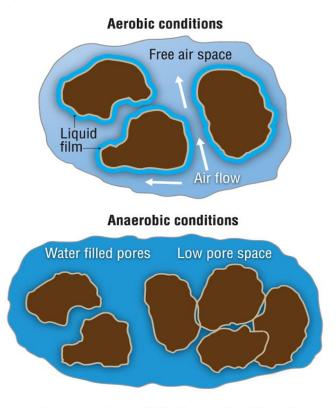
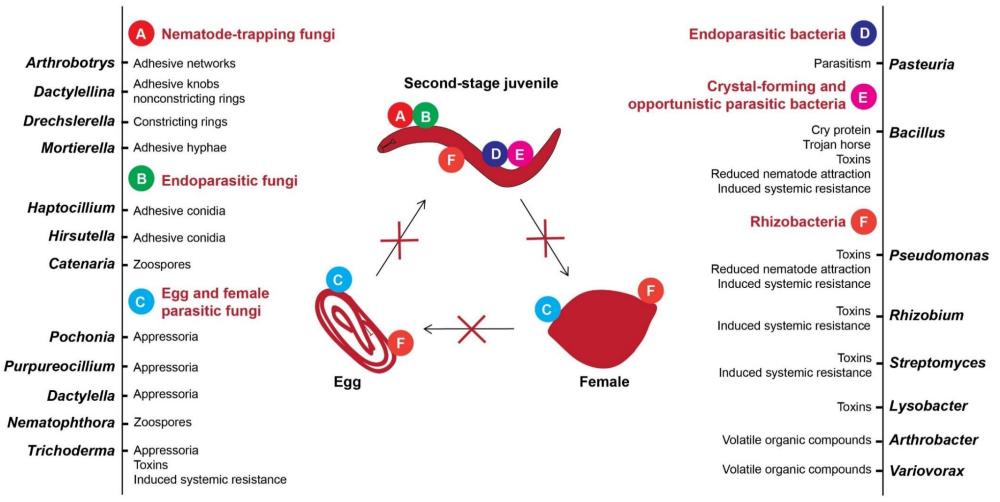


Image courtesy of U.S. Composting Council

(Rosskopf et al. 2020).

Soil amendments – organic matter


- Increasing soil organic matter reduces nematode damage (Linford hypothesis, 1933) "amendment-induced nematode suppression"
 - stimulation of nematode parasites and antagonists and increasing nonparasitic nematodes like omnivorous and predatory nematodes
- Organic amendments with lower C/N ratios generally considered to be more nematicidal
- Often contradictory results amendments cause a positive crop growth response, but not so much actual nematode suppression
 - Maybe not nematode abundance but nematode virulence is affected through changes in soil and root microbiome

Soil microbes that are nematode parasites / antagonists

Microbial consortia for biocontrol of plant-parasitic nematodes

Different types of nematicides (available in US)

Chemical name	Trade name	Structure	Soil movement / solubility (ppm)	Soil residual / Soil ½ life	Mode of Action	Toxicity Category
Fumigants (1,3-D, metam, chloropicrin)			Good- Gas	Short < 14 d	Multi-site	Danger
Oxamyl	Vydate	H ₃ C _N H ^{-N} S _{CH3}	Good- 240,000	Short 7 – 14 d	AChel	Danger
Fluensulfone	Nimitz	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ $	Medium- 545	Medium 15 d	Unknown	Caution
Fluopyram	Velum	$\bigcup_{CF_3}^{CI} \bigcup_{CF_3}^{CF_3}$	Poor – 10	Long > 200 d	SDHI	Caution
Fluazaindolizine	Salibro		Medium - 2000	Medium 30 d	Unknown	Caution
Cyclobutrifluram (later 2025)	Tymirium		TBD	Long	SDHI	Caution
Purpureocillium lilicanum Several strains		Poor	Short	Parasitism	OMRI	
Bacillus spp.Many products		Poor	Short	Unknown	OMRI	
Plant extracts Oils (neem, thyme, mustard, garlic), saponi			Poor-medium?	Short Unknown		OMRI

In summary:

1) Several plant-parasitic nematodes are associated with blackberries:

- ► Lesion, dagger, spiral and stubby root nematodes
- Dagger nematodes likely most problematic as they transmit (nepo)viruses in blackberries ('blackberry yellow vein disease' BYVD)
- 2) In Florida, root-knot nematodes do not appear to be a problem, but sting nematodes have been found with declining plants

3) Nematode management in blackberries

- >pre-plant soil disinfestation / nematicides (fluopyram, abamectin)
- ➢ soil management / amendments
- ➤ stimulating inherent plant defenses
- Resistant and tolerant cultivars? (screening)

Email: jad@ufl.edu

