In-Service Training (IST#: 32369)/CEU Roundup (FDACS Program # 39061)/

CCA CEU Tracking #: FL 54737 thru FL 54742

New Technology for Commercial Vegetable and Fruit Production (XIII)

Wednesday, February 26, 2025, from 8:45 to 4:00 PM

Blueberry classroom 154 (behind Fifield) & via Canvas

County:	City:	Zip code:
---------	-------	-----------

Name: (Use the <u>same name or symbol</u> for pre- and post-tests)

Post-test

Presentation Title:

Enhancing the Sweetness and Flavor of Florida Strawberries Using Modern Plant Breeding

Presenter: Dr. Seonghee Lee (813-419-6611) seonghee105@ufl.edu

1. Which of the following does NOT accurately describe a DNA marker?

A: DNA markers are sequences of DNA used to track genetic traits or variations in an organism.

B: They are used in strawberry breeding to select desirable traits, such as disease resistance or fruit quality.

C: DNA markers assist in strawberry breeding research.

D: DNA markers directly modify genes to create genetically modified organisms (GMOs).

2. How can the use of DNA markers help improving strawberry varieties? Choose all correct answers

A: DNA markers enable marker-assisted seedling selection (MAS) and allowing breeders to identify and select plants with desirable traits without relying on field phenotype.

B: They help accelerate breeding programs by reducing the need for extensive field trials, making the development of new strawberry varieties more efficient.

C: DNA markers directly alter the genetic makeup of strawberries but are used to identify genetic variations.

D: DNA markers assist in identifying genes associated with key traits, e.g., sweetness, flavor, and disease resistance

3. Why is advanced molecular breeding technology necessary in modern plant breeding? Choose all correct answers

A: Molecular breeding accelerates the development of improved crop varieties by enabling early selection of desirable traits through DNA markers.

B: It enhances precision in breeding by reducing genetic drag and ensures that only beneficial traits are retained while minimizing unwanted traits.

C: Molecular breeding reduces breeding time and costs by eliminating the need for extensive multi-generational field trials.

D: Molecular breeding will always speed up the development of all newly bred strawberries, ensuring better taste and disease resistance.

4. Which of the following is NOT correct regarding CRISPR gene editing in plant breeding?

A: CRISPR gene editing enables precise modifications within a plant's existing genome without introducing foreign DNA.

B: Regulatory agencies in the U.S. classify CRISPR-edited crops as non-GMO if no foreign genes are inserted.

C: CRISPR gene editing always results in genetically modified organisms (GMOs) and is regulated the same way as transgenic crops.

D: CRISPR allows for targeted changes similar to natural mutations, which can also occur through conventional breeding or spontaneous genetic variation.