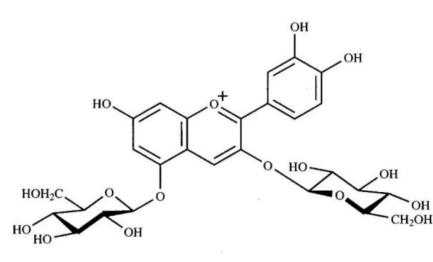

Influence of packaging material on the properties of carbonated muscadine wine under ambient storage conditions

Nicholas A. Wendrick; Andrew J. MacIntosh, Ph.D.; and Katherine A. Thompson-Witrick, Ph.D.

Introduction


- Canned wine has been gaining popularity for years
 - Single serving
 - Less breakage
 - Recyclability
- 2023: \$554 million in sales
- CAGR: sees continual growth
 - 17.1% Future Market Insights
 - 13.1% Global Market Insights
 - 13.2% Grand View Research
- Sparkling wine: 8.8 billion (2024)

Cans				
Pros	Cons			
Resistant to oxidation, cork taint, and breakage	Low internal strength,pressurization necessary			
Lighter, cheaper, and more sustainable than glass	Suspectable to flavor scalping, flavor tainting, and other negative chemical changes			
Popular at venues where glass is prohibited	Negative consumer perception of canned wine			
Can size lead to casual consumption	Capital equipment cost			
Can art and creative labels				

Cyanidin 3,5-di-O-glucoside

Table 2

Six major anthocyanidin groups (MeO: methoxy group; OH: hydroxyl group; H: hydrogen) modified from Welch et al. (2008) [39].

Anthocyanidins	Substitutions						
	R ₃	R ₅	Rő	R ₇	R _{3′}	R4′	R _{5'}
Cyanidin (Cy)	OH	OH	н	OH	OH	OH	н
Delphinidin (Del)	OH	OH	н	OH	OH	OH	OH
Pelargonidin (Pg)	OH	OH	н	OH	н	OH	н
Peonidin (Pn) (from Cy)	OH	OH	н	OH	OMe	OH	н
Petunidin (Pt) (from Del)	OH	OH	н	OH	OMe	OH	OH
Malvidin (Mv) (from Del)	OH	OH	н	OH	OMe	OH	OMe

Packaging Influence on Color

- Six main types of anthocyanidins in muscadine wine
 - Cyanidin, Delphinidin, Pelargonidin, Peonidin, petunidin, and Malvidin
- Degradation of muscadine wine primarily due to type of anthocyanin present
- Poor stability of the 3,5-O-diglucoside compared to 3-monoglucoside in Vitis vinifera

Objective

• Determine the influence packaging type has on the physiochemical characteristics of carbonated muscadine wine at ambient temperature over a six-month shelf-life study.


Methods

- Red noble muscadine wine donated from Paulk Vineyards
- Wine was carbonated to 3 vol/vol
- Packaged in glass bottles and cans
 - 187 mL champagne style bottles with natural cork and cap
 - 355 mL aluminum cans

UF IFAS

UNIVERSITY of FLORIDA

 Stored at ambient temperature (~25 °C)

Sampling

- Temperature and humidity monitored
- Samples pulled every 15 days over 180-day time frame
 - 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 160, 175 and 180.
- Packages degassed for 2 minutes via sonication
- Stored at -20 C until analyzed

Physiochemistry

•ABV, Total soluble solids (TSS), Density (Anton-Parr)

•Free and total Sulfites (Ripper method)

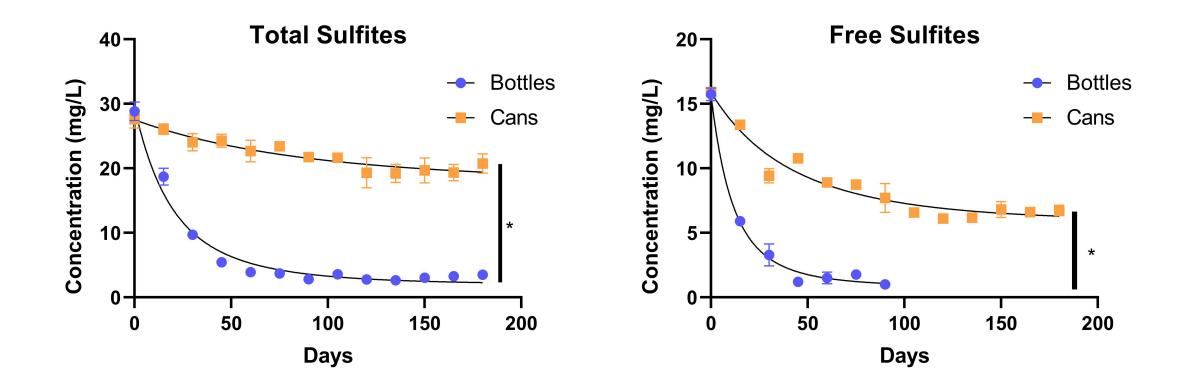
•Color (Glories method)

•pH and TA (AOAC methods)

Analytical Chemistry

•GC-MS – volatile and semi-volatile compounds

Anthocyanins (HPLC)


•FTIR (Packaging)

Statistics – One-way ANOVA and Tukey's HSD

*Bold indicates areas of focused for presentation

Sulfites

Analysis of Volatile and Semi-Volatile compounds

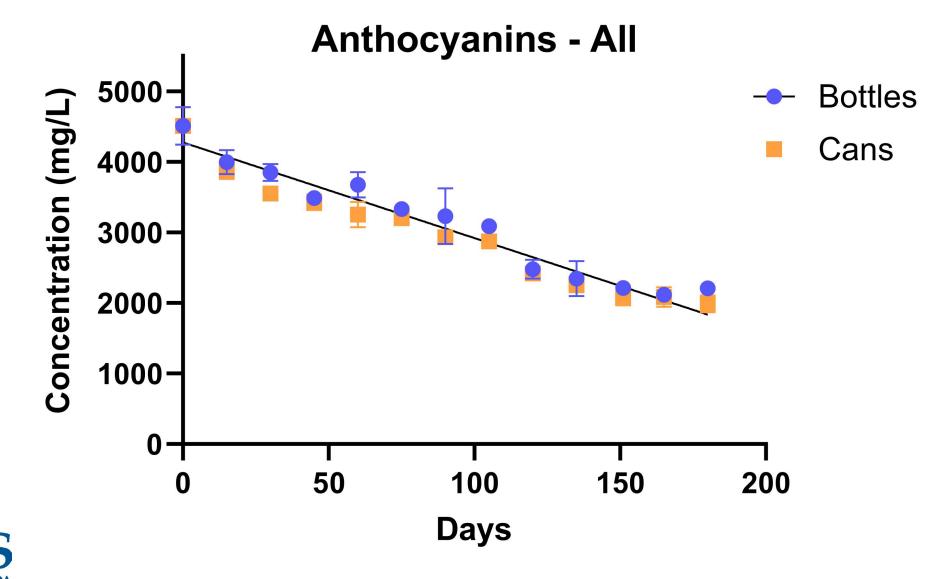
- Shimadzu QP-2010 Plus coupled with QP2010 SE MSD
- Extraction: SPME fiber (DVB/CARB/PDMS)
 - Salt (30% w/v)
 - Extraction
 - Sample size: 10 mL in 20 mL HS vial
 - 30 mins @ 40°C
 - Agitated 250 rpm
- Identification Compounds
 - Standards
 - Nist library
 - LRI

Thompson-Witrick et al. 2015

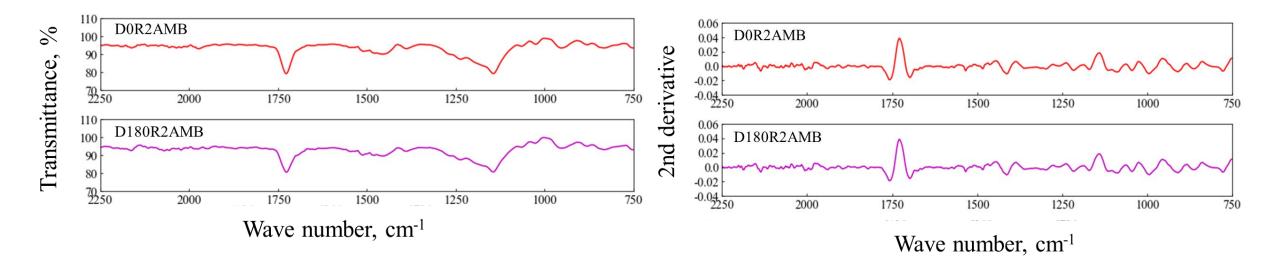
Volatile Composition

	Beginnir	ıg (mg/L)	End (mg/L)		
	Bottles	Cans	Bottles	Cans	
Acids	0.45 ± 0.25	0.37 ± 0.15	0.09 ± 0.09	0.12 ± 0.10	
Alcohols	14.00 ± 5.01	18.11 ± 1.86	24.84 ± 4.20	22.34 ± 5.42	
Aldehydes	0.04 ± 0.03	0.01 ± 0.01	0.02 ± 0.01	$0.07 \pm 0.03^{*}$	
Esters	4.77 ± 1.83	5.03 ± 0.57	3.18 ± 0.30	4.18 ± 1.24	
Terpenes	0.04 ± 0.01	0.06 ± 0.01*	0.03 ± 0.01	0.07 ± 0.04	
Total	19.31 ± 6.73	23.57 ± 2.31	28.17 ± 4.03	26.79 ± 6.24	

VOCs were compared between bottles and cans at the beginning (Day 0 and Day 15) and end (Day 165 and 180). Mean \pm SD; n = 6. *Represents statistical significance.



Anthocyanins


- HPLC with automatic sampler
- Diodade Array Detector (DAD) 520 nm
- C18 column
- Identification and Quantification using a five-point curve:
 - Cyanidin
 - Delphinidin
 - Pelargonidin
 - ∘ Peonidin
 - Petunidin
 - \circ Malvidin

Sandhu, A. K., & Gu, L. (2010). UFIFAS UNIVERSITY of FLORIDA Total Anthocyanins

Packaging Analysis - FTIR

Conclusions

- Total sulfites changed during ambient (free sulfites) study
- Aroma and flavor compounds were statistically significant for some classes but not substantially different in concentration across all VOCs
- Remaining physicochemical analyses (pH, TA, alcohol, sugar, etc.) and all five-anthocyanin concentrations did not significantly change over time between bottles and cans for both experiments
- Suggesting aluminum cans may be a viable packaging alternative for carbonated muscadine wine

Acknowledgments

Thank you to the Paulk Vineyards for graciously donating their wine to this research. Also, would like to thank the Florida Dept. of Agriculture and Consumer Services for funding this project.

Questions

References

- Thompson-Witrick, K. A., Rouseff, R. L., Cadawallader, K. R., Duncan, S. E., Eigel, W. N., Tanko, J. M. and O'Keefe, S. F. (2015). Comparison of Two Extraction Techniques, Solid-Phase Microextraction Versus Continuous Liquid–Liquid Extraction/Solvent-Assisted Flavor Evaporation, for the Analysis of Flavor Compounds in Gueuze Lambic Beer. Journal of Food Science, 80, C571 -C576.
- 2. Sandhu, A. K., & Gu, L. (2010). Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (muscadine grapes) as determined by HPLC-Dad-ESI-MSn. Journal of Agricultural and Food Chemistry, 58(8), 4681–4692. https://doi.org/10.1021/jf904211

Appendix - Physiochemical

	рН	TA (g*/L)	Ethanol (%v/v)	Brix (°)	RS (g/L)
Bottles	3.15 ± 0.02	6.26 ± 0.53	11.97 ± 0.08	2.78 ± 0.21	69.18 ± 2.25
Cans	3.14 ± 0.04	6.22 ± 0.39	11.78 ± 0.22	2.67 ± 0.14	67.45 ± 2.12

Cumulative values across experiment due to no significance between bottles and cans. *grams of tartaric acid