



# Food Fermentations

- Typically the metabolism of sugar into a gas, acid or alcohol
- Purpose of using microorganisms to ferment foods:
  - Improvement of shelf life
  - Improvement of product safety
  - Novel sensory characteristics

#### • Microorganisms used in fermented foods:

- Lactic acid bacteria (LAB)
- Yeast
- Common to use combinations of LAB and yeast
- Few molds: Penicillium, Rhizopusoligosporus, Mucor, Aspergillus oryzae
- Other bacteria: Acetobacter and Glucobacter

#### • Fermented foods (examples):

 Milk products (kefir), vegetable products (sauerkraut), beer, wine, meat products (summer sausage), vinegar, soy sauce, rice wine, etc.



## Wine production Processing steps: • Grape pressing • Water • Sugar • Volatiles • Enzymes • Protein (large and small) • Organic acids (malic) • Phenols

| Sugars                                                                                                              | Table 4-1. Sugar contents (%) of fresh foods <sup>a,b</sup> |           |            |         |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------|------------|---------|--|
| <u>Relative sweetness:</u>                                                                                          |                                                             | D-glucose | D-fructose | Sucrose |  |
| Sucrose = 100                                                                                                       | Grape                                                       | 6.86      | 7.84       | 2.25    |  |
| Glucose = 56                                                                                                        | Cherry                                                      | 6.49      | 7.38       | 0.22    |  |
|                                                                                                                     | Apple                                                       | 1.17      | 6.04       | 3.78    |  |
| Fructose = 133                                                                                                      | Pear                                                        | 0.95      | 6.77       | 1.61    |  |
| Maltose = 33                                                                                                        | Beet                                                        | 0.18      | 0.16       | 6.11    |  |
|                                                                                                                     | Pea                                                         | 0.32      | 0.23       | 5.27    |  |
| Lactose = 16                                                                                                        | Carrot                                                      | 0.85      | 0.85       | 4.24    |  |
| <ul> <li>Different sugars have different<br/>reactivity, sweetness, solubility,<br/>fermentability, etc.</li> </ul> | Sweet corn                                                  | 0.34      | 0.31       | 3.03    |  |
|                                                                                                                     | Sweet potato                                                | 0.33      | 0.30       | 3.37    |  |
|                                                                                                                     | Lima bean                                                   | 0.04      | 0.08       | 2.59    |  |
|                                                                                                                     | Tomato                                                      | 1.12      | 1.34       | 0.01    |  |
|                                                                                                                     | Onion                                                       | 2.07      | 1.09       | 0.89    |  |
|                                                                                                                     | Broccoli                                                    | 0.73      | 0.67       | 0.42    |  |
|                                                                                                                     | Spinach                                                     | 0.09      | 0.04       | 0.06    |  |

### 3







| Wine production                                                         |                               |
|-------------------------------------------------------------------------|-------------------------------|
| Processing steps:                                                       |                               |
| <ul> <li>Grape pressing</li> <li>Pasteurization of must/grap</li> </ul> | e juice                       |
| <ul> <li>Yeast addition (pitching, 10<br/>cerevisiae)</li> </ul>        | -                             |
| <ul> <li>Fermentation of must</li> </ul>                                |                               |
| Grape Juice => Will ferment                                             | Wine                          |
|                                                                         | • Water                       |
| • Water                                                                 | • Yeast                       |
| • Sugar                                                                 | • Sugar                       |
| <ul> <li>Volatiles</li> </ul>                                           | <ul> <li>Volatiles</li> </ul> |
| • Enzymes                                                               | • Enzymes                     |
| Protein (large and small)                                               | Protein (large and small)     |
| <ul> <li>Organic acids (malic)</li> </ul>                               | Organic acids (malic)         |
| Phenols                                                                 | • Phenols                     |
| • Air                                                                   | • CO2                         |

#### Wine production **Processing steps:** Grape pressing Pasteurization of must/grape juice • Yeast addition (pitching, 10<sup>6-7</sup> cells/ml Saccharomyces cerevisiae) Fermentation of must • (Typically 3-5 days at 20-28°C for red wines, whites are fermented at 10-18°C for 7-14 days) • S. cerevisiae converts the must sugar to alcohol $(C_6H_{12}O_6 -> 2C_2H_5OH + 2CO_2)$ Alcohol concentration depends on initial sugar content • Most wine strains will stop fermentation at 18% v/valcohol which becomes inhibitory to the yeast cell • Sweetness of wine is also controlled by initial sugar content • Wine pH very low at around 3.5 which is inhibitory

to bacterial pathogens





- Aging
- Bottling







### Fermented vinegar Two stage fermentation: First stage: Conversion of carbohydrates to ethanol (anaerobic) • $C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH$ · Second stage: Conversion of ethanol to acetic acid (aerobic, oxidation of alcohol to acid): • $C_2H_5OH + O_2 \implies CH_3COOH + H_2O$ (overall reaction) • Some strains of bacteria (including members of Clostridium) may not use intermediate: • $C_6H_{12}O_6 \rightarrow 3 \text{ CH}_3\text{COOH}$ (overall reaction) Acetification bacteria • Acetobacter and Gluconobacter: • Acetobacter spp. are preferred because Gluconobacter may over-oxidize producing CO<sub>2</sub> Difficult organisms to grow, so new batches are commonly inoculated with a starter from a previous fermentation Acetobacter species commonly found in cultures: • A. europaeus, A. hansenii, A. acidophilum, A. polyoxogenes and A. pasteurianus



## Fermentations

- In the presence of O<sub>2</sub>, aerobic metabolish can yield ~38 ATP
- In the absence of O<sub>2</sub>, NADH cannot be used by the electron transport chain (if available to the organism)
- Various types of fermentations:
  - Alcoholic fermentation: Glucose  $\rightarrow$  2 CO<sub>2</sub> + 2 CH<sub>3</sub>CH<sub>2</sub>OH
  - Lactic acid fermentation: Glucose  $\rightarrow$  2 CH<sub>3</sub>CHOHCOOH
  - Mixed acid fermentation: End products a mix of ethanol and acetic, lactic, succinic and formic acids (enterobacteria)
  - Propionic acid fermentation: End product mainly propionate
  - Butyric acid fermentation: End products butanol and butyrate (clostridia)
  - Energy yield is only 2-4 ATP per glucose molecule
- Some fermentative bacteria such as lactic acid bacteria lacks the electron transport chain and only uses fermentation

| Fin          |     |  |  |  |
|--------------|-----|--|--|--|
|              |     |  |  |  |
|              |     |  |  |  |
|              |     |  |  |  |
|              |     |  |  |  |
|              |     |  |  |  |
| • Extra slid |     |  |  |  |
|              | 100 |  |  |  |











