







HOS4313C, Class 29598, Section 3388 2 Undergraduate Credits

**Meets**: Tuesdays: 1:55 – 2:45 pm (Period 7) Thursdays: 1:55 – 4:55pm (Periods 7<sup>th</sup> – 9<sup>th</sup>) **(50 min class** plus interactive assignments)

Location: Blueberry Building Teaching Lab (BLRB 152); class requires physical presence

**Pre-requisites**: AGR 3303 or PCB 3063 - Genetics, and HOS 3305 - Introduction to Plant Molecular Biology, or Permission from Course Coordinator

**Instructors** (Horticultural Science Department):

Cătălin Voiniciuc (Coordinator) Bldg. 885, 0003B; 352-273-4782, cvoiniciuc@ufl.edu

Kelly Balmant Fifield Hall; 352-273-8103, balmant@ufl.edu

Jingwei Fu (Teaching Assistant) jingweifu@ufl.edu

**Course Materials Fee:** \$140.00 per student to partially cover laboratory consumables.

**Office hours**: The course coordinator will be generally available 3 to 4 pm on Fridays. Meetings can also be arranged by personal appointment via email to the instructors (include "HOS4313C" in subject line) using the contact details above. Questions and discussions about course content are encouraged to be posted on the Canvas discussion forum. Please follow these guidelines for effective online interactions: <a href="https://www.inc.com/business-insider/email-etiquette-rules.html">https://www.inc.com/business-insider/email-etiquette-rules.html</a>

## **Course Description**

Molecular Biology studies how macromolecules encode and regulate the flow of genetic information in living organisms. This course will provide students theoretical and practical experience in the basic laboratory methods for nucleic acid sequences and proteins. Instruction is based on a combination of lectures, dry and wet lab experimentation (through interactive class activities and/or internships), and maintenance of laboratory notebooks. In the first half of the course, students will learn about the state-of-the-art techniques for molecular cloning, common pitfalls, and how to manipulate DNA for plant molecular biology. In the second half of the course, students will be introduced to several approaches for the analysis of gene expression and proteins, including current bioinformatics resources that assist with data analysis. In addition, the class will learn about methods for transient and stable transformation in plants.

### **Course Goals**

- Provide students with a thorough understanding of the physical-chemical and biological principles underlying basic techniques and procedures used in molecular biology.
- Foster the development of molecular techniques, planning and organizational skills.
- Acquaint students with the exploration and utilization of bioinformatics resources.
- Help students develop critical thinking skills for lab book maintenance and data analysis.

**Learning Objectives.** After taking this course students will be able to:

- Recognize the basic types of techniques for the Central Dogma of biology.
- Prepare an electronic laboratory notebook to manage their methods and results.
- Design primers (oligonucleotides) suitable for PCR and DNA assembly
- Select appropriate methods and supplies for DNA, RNA and protein extraction.
- Plan experimental workflows for DNA, RNA and protein quantification/evaluation.
- Apply various bioinformatic tools to interpret and process molecular information.
- Examine and compare methods available for transformation of plants and microbes.
- Present and critically evaluate scientific figures, recognizing common pitfalls.

**Reading Material:** There is no textbook selected for this course. Electronic reading materials (including protocols, reviews and primary research articles) will be provided to the students through Canvas (<a href="https://elearning.ufl.edu/">https://elearning.ufl.edu/</a>). Helpful references include:

<u>Addgene: Molecular Biology Reference</u> <u>Current Protocols in Molecular Biology - Wiley Online Library</u>

#### Class Schedule

| Date                        | Class | Instructor | Topics                              |  |
|-----------------------------|-------|------------|-------------------------------------|--|
| Tuesday, January 23, 2024   | 01    | Voiniciuc  | Introduction, Lab Safety, Lab Books |  |
| Thursday, January 25, 2024  | 02    | Voiniciuc  | Central Dogma and Key Techniques    |  |
| Tuesday, January 30, 2024   | 03    | Voiniciuc  | Molecular reagents and supplies     |  |
| Thursday, February 1, 2024  | 04    | Voiniciuc  | DNA extractions and quantification  |  |
| Tuesday, February 6, 2024   | 05    | Voiniciuc  | Restriction Enzymes                 |  |
| Thursday, February 8, 2024  | 06    | Voiniciuc  | Digestions and Electrophoresis      |  |
| Tuesday, February 13, 2024  | 07    | Voiniciuc  | Primer Design for PCR and cloning   |  |
| Thursday, February 15, 2024 | 08    | Voiniciuc  | DNA amplification via with PCR      |  |
| Tuesday, February 20, 2024  | 09    | Voiniciuc  | DNA assembly methods                |  |
| Thursday, February 22, 2024 | 10    | Voiniciuc  | MoClo and E. coli Transformation    |  |
| Tuesday, February 27, 2024  | 11    | Voiniciuc  | Verifying colonies and DNA          |  |
| Thursday, February 29, 2024 | 12    | Voiniciuc  | Multiple Sequence Alignment         |  |
| Tuesday, March 5, 2024      | 13    | Voiniciuc  | Mid-term Exam                       |  |
| Thursday, March 7, 2024     | 14    | Balmant    | Introduction to Bioinformatics      |  |
| Tuesday, March 12, 2024     |       | Holidays   |                                     |  |
| Thursday, March 14, 2024    |       | Holidays   |                                     |  |
| Tuesday, March 19, 2024     | 15    | Balmant    | Methods to Quantify Gene            |  |
| Thursday, March 21, 2024    | 16    | Balmant    | Expression                          |  |

| Tuesday, March 26, 2024  | 17 | Balmant |                              |  |
|--------------------------|----|---------|------------------------------|--|
| Thursday, March 28, 2024 | 18 | Balmant |                              |  |
| Tuesday, April 2, 2024   | 19 | Balmant | Methods to Analyze Proteins  |  |
| Thursday, April 4, 2024  | 20 | Balmant |                              |  |
| Tuesday, April 9, 2024   | 21 | Balmant |                              |  |
| Thursday, April 11, 2024 | 22 | Balmant | Plant Transformation Methods |  |
| Tuesday, April 16, 2024  | 23 | Balmant |                              |  |
| Thursday, April 18, 2024 | 24 | Balmant | Review period                |  |
| Tuesday, April 23, 2024  | 25 | Balmant | Final Exam                   |  |

#### **Class Attendance**

In person attendance is critical for success in this class. Students are expected to arrive at the posted hours to ensure a timely start. The course coordinator will post course material on Canvas. Sharing of course materials is prohibited without the written consent of the instructors. Cell phones should be MUTED to minimize distractions. Since attendance of all classes is expected, contact the coordinator **prior to** the scheduled class if you are ill or an emergency occurs. The attendance requirements are consistent with university policies that can be found at: <a href="https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx">https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx</a>

# **Lab Safety**

Since the class will take place in a laboratory setting, all students must follow the <u>UF | EHS (ufl.edu)</u> and instructors' safety guidelines to ensure compliance. There include: eating or drinking in the lab, dressing appropriately (closed-toe shoes) and donning the proper personal protective equipment when conducting experiments.

Chemical and Lab Safety » UF | EHS (ufl.edu)

Biological Safety » UF | EHS (ufl.edu)

Hazardous Waste Management » UF | EHS (ufl.edu)

Individuals who do not comply with the safety rules will not be allowed in the lab. Students will be expected to keep their working area clean and uncluttered. Always ask questions if you are not completely sure about a procedure or piece of equipment. You are here to learn.

#### **Student Evaluation**

The class will combine lectures with several interactive activities, including the potential of a short-term internship to assist with a scientific project in a laboratory. Each student will maintain an electronic laboratory notebook (Cloud-based platform for biotech R&D | Benchling) and be evaluated on how well they document and organize the protocols, data and analyses. The technical performance will assess the student preparedness for hands-on activities and their skills in following standard laboratory protocols. The Class/Lab participation will be based on professional attitude and active participation during scientific lectures, discussions and experiments. For the Mid-term and Final Exams, students will be tested on the principles of the techniques from prior class sessions, including the analysis of data resembling the class

content. Expectations (including specific topics) and standards for all the activities will be detailed in class and will follow the UF Grades and Grading Policies.

| Evaluation Criteria            |       | <b>Points</b> | % of Grade |
|--------------------------------|-------|---------------|------------|
| 1) Laboratory notebook/reports |       | 100           | 25%        |
| 2) Technical performance       |       | 40            | 10%        |
| 3) Class/Lab participation     |       | 60            | 15%        |
| 3) Mid-term Exam               |       | 100           | 25%        |
| 4) Final exam                  |       | 100           | 25%        |
| •                              | Total | 400           | 100%       |

#### **Online Course Evaluation**

Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at <a href="https://gatorevals.aa.ufl.edu/students/">https://gatorevals.aa.ufl.edu/students/</a>.

## **University's Honesty Policy**

UF students are bound by The Honor Pledge which states, "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

- Student Honor Code: http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code
- Guidelines for acceptable use of Al Tools: https://go.ufl.edu/edis-ai-v1

#### **Health and Wellness Resources**

Students experiencing crises or personal problems that interfere with their general wellbeing are encouraged to utilize the university's counseling resources. The Counseling & Wellness Center provides confidential counseling services at no cost for currently enrolled students. Resources are available on campus for students having personal problems or lacking clear career or academic goals, which interfere with their academic performance.

- University Counseling & Wellness Center, 352-392-1575, www.counseling.ufl.edu/cwc/
- Matter We Care, www.umatter.ufl.edu/
- Career Resource Center, First Floor JWRU, 392-1601, www.crc.ufl.edu/
- Student Success Initiative, http://studentsuccess.ufl.edu

## **Students with Disabilities**

To request classroom accommodations, please consult the *Disability Resource Center*, 0020 Reid Hall, 392-8565, <u>www.disability.ufl.edu</u>