








3 Undergraduate Credits

Meets: 10:40-11:30 am on Mon, Wed, Fri;

Synchronous Classes via Zoom, with materials on Canvas

95% Online; 5% of Assignments Require Physical Presence at UF

**Instructors** (Horticultural Science Department):

Cătălin Voiniciuc (Coordinator)

Andrew Hanson

Edmar R. Oliveira-Filho

Bldg. 885, 0003B; (352) 273-4782, cvoiniciuc@ufl.edu

Fifield Hall, 2143; (352) 273-4856, adha@ufl.edu

Fifield Hall, 2302; (352) 273-4859, ramosdeoli.edmar@ufl.edu

# **Course Description**

This course is designed to introduce senior undergraduate students to the basic principles of synthetic biology (SynBio) as well as the latest advances in this emerging field. Topics will include the implementation of Design-Build-Test-Learn cycles for metabolic pathways and regulatory circuits, directed evolution, and biofoundry-driven automation. Emphasis will be on plant systems, with bacterial and yeast systems included when appropriate to accelerate the study of plant enzymes and products. This online class combines lectures with interactive discussions and activities, but space is limited so register early. A part of the final assignment, 5% of course-grade, will involve an in-person outreach activity. This class will empower students to identify, evaluate, and present SynBio innovations that address agricultural challenges.

**Knowledge Prerequisites**: There are no strict prerequisites, but basic knowledge of molecular biology such as the flow of information (DNA  $\rightarrow$  RNA  $\rightarrow$  protein) in living organisms is needed.

### **Learning Objectives:**

After successful completion of this course, students will be able to:

- Recognize the origins of SynBio, the state of the art, and emerging opportunities
- Analyze and evaluate the feasibility of proposed solutions to real-world problems
- Compare SynBio successes in microbial systems with recent advances in plants
- Demonstrate how biological cells can be programmed to make designer molecules
- Propose SynBio approaches to address relevant biological challenges
- Predict the bottlenecks to reaching the desired targets and design alternatives

**Office hours:** The course coordinator will have office hours at 3:00 to 3:30 pm Fridays. Meetings can be arranged by personal appointment via email to the instructors using the contact details above. General questions and discussions can be posted on the Canvas discussion forum. Please follow these guidelines for effective online interactions:

• Guide from UF's Quality Assurance Committee: Netiquette Guide for Online Courses

- Weekly Schedule and AssignmentsSubtopics that include assignments are marked in **bold** 
  - UF approved holidays are shaded in blue

| Date         | Class | Instructor         | Module                      | Subtopic                                    |
|--------------|-------|--------------------|-----------------------------|---------------------------------------------|
| Fri, Aug 23  | 01    | Voiniciuc          | SynBio and its origins      | Scope of SynBio                             |
| Mon, Aug 26  | 02    | Hanson             |                             | History of SynBio & Plant<br>SynBio         |
| Wed, Aug 28  | 03    | Voiniciuc          |                             | DBTL cycle & examples                       |
| Fri, Aug 30  | 04    | Voiniciuc          |                             | Biofoundries & industrialization of biology |
| Mon, Sept 2  | ŀ     | Holiday            | Labor Day                   | -                                           |
| Wed, Sept 4  | 05    | Hanson             | Applying Fermi calculations | Worked examples in class                    |
| Fri, Sept 6  | 06    | Hanson             |                             | Presentation/discussion of homework 1       |
| Mon, Sept 9  | 07    | Hanson             |                             | Presentation/discussion of homework 2       |
| Wed, Sept 11 | 08    | Voiniciuc          | Cells as circuit boards     | Logic gates & building them in cells        |
| Fri, Sept 13 | 09    | Voiniciuc          |                             | Bacterial logic gates & metabolic valves    |
| Mon, Sept 16 | 10    | Voiniciuc          |                             | Plant logic gates – development             |
| Wed, Sept 18 | 11    | Voiniciuc          |                             | Plant logic gates – physiology/metabolism   |
| Fri, Sept 20 | 12    | Voiniciuc          | Biosensors & optogenetics   | Design principles                           |
| Mon, Sept 23 | 13    | Voiniciuc          |                             | Bacterial biosensors                        |
| Wed, Sept 25 | 14    | Voiniciuc          |                             | Plant and eukaryotic biosensors             |
| Fri, Sept 27 | 15    | Voiniciuc          |                             | Non-plant optogenetics                      |
| Mon, Sept 30 | 16    | Voiniciuc          |                             | Plant optogenetics                          |
| Wed, Oct 2   | 17    | Hanson             | Directed evolution          | Classical vs. continuous directed evolution |
| Fri, Oct 4   | 18    | Hanson             |                             | Classical enzyme evolution examples         |
| Mon, Oct 7   | 19    | Hanson             |                             | Continuous directed evolution examples      |
| Wed, Oct 9   | 20    | Hanson             |                             | Plant directed evolution activity           |
| Fri, Oct 11  | 21    | Oliveira-<br>Filho | Plant-related Industries    | Case 1 - Artemisinin                        |
| Mon, Oct 14  | 22    | Oliveira-<br>Filho |                             | Case 2 - Amyris products                    |
| Wed, Oct 16  | 23    | Oliveira-<br>Filho |                             | Scale-up & its problems                     |
| Fri, Oct 18  | ŀ     | Holiday            | Homecoming                  | -                                           |

| Mon, Oct 21 | 24      | Hanson      | Synthetic metabolism   | Going beyond nature         |
|-------------|---------|-------------|------------------------|-----------------------------|
|             |         |             |                        | In vitro synthetic          |
| Wed, Oct 23 | 25      | Hanson      |                        | metabolism                  |
| Fri, Oct 25 | 26      | Hanson      |                        | Bacterial syn. metabolism   |
| Mon, Oct 28 | 24      | Hanson      |                        | Plant synth metabolism      |
|             |         |             | Making and breaking    |                             |
| Wed, Oct 30 | 25      | Voiniciuc   | polymers               | Biopolymer engineering      |
| Fri, Nov 1  | 26      | Voiniciuc   |                        | Protein glycosylation       |
| Wed, Nov 4  | 27      | Voiniciuc   |                        | Designer polysaccharides    |
| Wed, Nov 6  | 28      | Voiniciuc   |                        | Lignin valorization         |
|             |         |             |                        | Biomass challenges and      |
| Fri, Nov 8  | 29      | Voiniciuc   |                        | the new bioeconomy          |
| Mon, Nov 11 | Holiday |             | Veterans Day           | -                           |
| Wed, Nov 13 | 33      | Voiniciuc   | -                      | Plants for biofortification |
|             |         | Voiniciuc & | SynBio solutions to    | Class project               |
| Fri, Nov 15 | 34      | Hanson      | planetary problems     | presentations & critiques   |
|             |         | Voiniciuc & |                        | Class project               |
| Mon, Nov 18 | 35      | Hanson      |                        | presentations & critiques   |
|             |         | Voiniciuc & |                        | Class project               |
| Wed, Nov 20 | 36      | Hanson      |                        | presentations & critiques   |
| Fri, Nov 22 | 37      | Voiniciuc   | Future of Plant SynBio | Emerging plant systems      |
| Mon, Nov 25 | Holiday |             | Thanksgiving Break     | -                           |
| Wed, Nov 27 | Holiday |             | Thanksgiving Break     | -                           |
| Fri, Nov 29 | Holiday |             | Thanksgiving Break     | -                           |
| Mon, Dec 2  | 38      | Voiniciuc   |                        | Transformation barriers     |
| Wed, Dec 4  | 39      | Voiniciuc   |                        | Plant SynBio Outreach       |

## **Student Evaluation and Grading**

The class will combine lectures with interactive assignments that will be done primarily in small groups (activities 1 and 5), together with graduate students, as well as some individual tasks. Students will have take-home assignments to assess the scale and feasibility of SynBio solutions to global problems using Fermi calculations. The primary semester project (activity 5) will involve group research preparation and in-class presentation. For all assignments, a portion of the grade will be based on professional attitude and active participation in the discussions. For activity 6, in addition to regular class participation throughout the semester, students will disseminate course lessons to the UF/IFAS community and beyond. Expectations for undergraduate students and standards for all the activities will be detailed in class and will follow the UF Grades and Grading Policies.

| Activity                                         | Points | % of Grade |
|--------------------------------------------------|--------|------------|
| 1) Fermi Calculations and Discussion             | 60     | 15%        |
| 2) Biosensors and Optogenetics Activity          | 20     | 5%         |
| 3) Plant Directed Evolution activity             | 20     | 5%         |
| 4) Lignocellulosic Biomass / Bioeconomy Activity | 20     | 5%         |
| 5) SynBio Solutions to Planetary Problems        | 200    | 50%        |
| 6) Plant SynBio Class Participation and Outreach | 80     | 20%        |
| Total                                            | 400    | 100%       |

#### **Class Attendance**

This course will be delivered synchronously online via Zoom, so students will need internet access and are expected to log in prior to scheduled class times to ensure a timely start. Physical presence at UF/IFAS research facilities (<a href="https://research.ifas.ufl.edu/research-areas/facilities/">https://research.ifas.ufl.edu/research-areas/facilities/</a>) will be required to complete the outreach assignment. The course coordinator will record the bulk of class activities and post them on Canvas. Sharing of course materials is prohibited without the written consent of the instructors. Since attendance of all classes is expected, contact the coordinator **prior to** the scheduled meeting if you are ill or an emergency occurs. The attendance requirements are consistent with university policies that can be found at: <a href="https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx">https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx</a>

#### **Course Materials**

No textbooks are required for this class, since there is no book that fully covers this rapidly developing field. Review and research articles will be provided to students electronically on Canvas. The required and optional reading will be available at least a week before each lecture.

• There are no materials and supplies fees for this course.

#### **Online Course Evaluation**

Students are expected to provide professional and respectful feedback on the quality of instruction in this course by completing course evaluations online via GatorEvals. Guidance on how to give feedback in a professional and respectful manner is available at <a href="https://gatorevals.aa.ufl.edu/students/">https://gatorevals.aa.ufl.edu/students/</a>.

## **University's Honesty Policy**

UF students are bound by The Honor Pledge which states, "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

- Student Honor Code: http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code
- Guidelines for acceptable use of Al Tools: <a href="https://go.ufl.edu/edis-ai-v1">https://go.ufl.edu/edis-ai-v1</a>

# **Health and Wellness Resources**

- University Counseling & Wellness Center, 352-392-1575, www.counseling.ufl.edu/cwc/
- Matter We Care, <u>www.umatter.ufl.edu/</u>
- Career Resource Center, First Floor JWRU, 392-1601, www.crc.ufl.edu/
- Student Success Initiative, http://studentsuccess.ufl.edu

#### **Students with Disabilities**

To request classroom accommodations, please consult the *Disability Resource Center*, 0020 Reid Hall, 392-8565, <u>www.disability.ufl.edu</u>

## **Student Complaints**

 You can file and resolve any complaints about your experience in this course in the following site: www.distance.ufl.edu/student-complaint-process