HOS 6932 Survey of Breeding Tools and Methods
Graduate Level – 3 credit hours
Spring 2023

Coordinator Instructors: Dr. Patricio R. Munoz Felipe Ferrao
Blueberry Building Of. 120 Blueberry Building Of. 121
p.munoz@ufl.edu lferrao@ufl.edu

Module Instructors:

Dr. Patricio Munoz Dr. Felipe Ferrao Dr. Esteban Rios Dr. Carlos Messina
p.munoz@ufl.edu lferrao@ufl.edu estebanrios@ufl.edu cmessina@ufl.edu

Dr. Kevin Wang Dr. Kevin Begcy Dr. Fred Gmitter Dr. Jude Grosser
xuwang1@ufl.edu kbegcy.padilla@ufl.edu fgmitter@ufl.edu jgrosser@ufl.edu

Dr. Seonghee Lee
seonghee105@ufl.edu

Teaching Assistant: Gonzalo Casorzo Paul Adunola
gcasorzoprieto@ufl.edu paul.adunola@ufl.edu

Office Hours: By appointment only. Email the instructor or teaching assistant

Location and time: Tuesday, period 5 (11:45 AM – 12:35 PM), Fifield Hall 2316
Thursday periods 5-6 (11:45 AM – 1:40 PM), Fifield Hall 2316

Zoom: for students and co-instructors in RECs, and for students not able to attend in person
before authorization by the instructors:

https://ufl.zoom.us/j/93150952766?pwd=dXhFMnlzcz1hzNlfua31CSkpCShJiQT09
Meeting ID: 931 5095 2766
Passcode: 974287

Prerequisite Basic knowledge of physiology, genetics, plant breeding and plant biology reproduction is
required for all modules. Basic statistics and experimental design will be required for some
modules.

Course Description
This course provides a short review of some important methods and techniques used in plant breeding. The intent
of the course is to help students understand the breadth of disciplines in plant breeding. These will be taught by
experts using these techniques and methods in their breeding programs. Frequent evaluations by topic will occur
during the semester.

Intended Audience
The course is designed for graduate students working in plant breeding (e.g. agronomy, horticulture, environmental
horticulture, and forestry), or any student in biological science who wants to deepen his/her knowledge about the
methods and techniques and their applications in plant breeding.

Course Objectives
The course goal is to familiarize students with the application of diverse techniques used in plant breeding for
cultivar development. By the end of the semester students should be able to acknowledge the existence and
describe the methods cover in class. Students should be able to describe the advantages and disadvantages of the
different methods covered in the course. Students should also be able to identify what method and what strategy
should be applied depending on the crop species, the breeding goals, the population and the timeframe.
Evaluation
The evaluations for the student participation and performance will be determined by each of the instructors and communicated at the beginning of the section. These might include quizzes (in class or out of class), take-home exams, projects, hand-on activities, as well as paper discussions among others. Student feedback will be provided in writing and/or in class review of the responses.

<table>
<thead>
<tr>
<th>Points</th>
<th>Type</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Quiz</td>
<td>Plant Breeding</td>
</tr>
<tr>
<td>13</td>
<td>Quizzes</td>
<td>Genomic Selection</td>
</tr>
<tr>
<td>13</td>
<td>Quizzes</td>
<td>GS and Crop Modeling</td>
</tr>
<tr>
<td>13</td>
<td>Quizzes</td>
<td>Phenomics</td>
</tr>
<tr>
<td>13</td>
<td>Quizzes</td>
<td>Marker Assisted Selection</td>
</tr>
<tr>
<td>13</td>
<td>Quizzes</td>
<td>Chromosome Manipulations</td>
</tr>
<tr>
<td>13</td>
<td>Quizzes</td>
<td>Gene Editing</td>
</tr>
<tr>
<td>13</td>
<td>Quizzes</td>
<td>Embryo Rescue, Protoplast Fusion</td>
</tr>
<tr>
<td>100</td>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

Letter Grade
A >90 B+ 85 to 89 B 80 to 84 C+ 75 to 79 C 70 to 74 D+ 65 to 69 D 60 to 64 E < 60

UF grading policies: https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx

Evaluation Description
Each module will be evaluated by quizzes, projects, and tests on material covered in class. Quizzes at the beginning of the class will last the first 5 min of the class. Feedback will be given usually the following class or the following week after the evaluation is performed.

Software
For some of the modules, you will need to bring your own laptop. The main software used will be the statistical software R, which can be downloaded from www.r-project.org, and R-studio http://www.rstudio.com/. It is your responsibility to make sure that your computer has the latest version of R. Prior to the first day of class, please make sure you have removed all old versions of R, and have the most recent version installed. There are numerous online resources available for R; however, if you would like a traditional textbook, The R Book, is widely available and comprehensive.

Required and Recommended Literature
This course does not have required nor recommended textbook.

Course Schedule and Topics (Tentative).

<table>
<thead>
<tr>
<th>Week of semester Month/day</th>
<th>Module #: General Topic Description – Instructor in charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wk 1 01/10; 01/12</td>
<td>M0: Introduction, Plant Breeding – Dr. Patricio Munoz</td>
</tr>
<tr>
<td>Wk 2 01/17; 01/19</td>
<td>M1: Phenomics – Dr. Kevin Wang</td>
</tr>
<tr>
<td>Wk 3 01/24; 01/26</td>
<td>M1: Phenomics – Dr. Kevin Wang</td>
</tr>
<tr>
<td>Wk 4 01/31; 02/02</td>
<td>M2: Quantitative genetics and genomic selection – Dr. Felipe Ferrao</td>
</tr>
<tr>
<td>Wk 5 02/07; 02/09</td>
<td>M2: Quantitative genetics and genomic selection – Dr. Felipe Ferrao</td>
</tr>
<tr>
<td>Wk 6 02/14; 02/16</td>
<td>M3: Marker Assisted Selection – Dr. Seonghee Lee</td>
</tr>
</tbody>
</table>
General description of module

Introductions and Plant Breeding
Plant breeding is a complex and dynamic system that requires the integration of multiple skills and knowledge. In this module I expect we become familiar with each other as well as the rationale of the course and each of the modules. The expectation is to discuss the breadth of the methods and techniques used in plant breeding while maintaining a breeding strategy and breeding goals.

Quantitative Genetics and Genomic Selection
In this session, we will cover the motivation and intuition behind predicting phenotypic observations using genetic markers, with a particular focus on the use of frequentists and Bayesian approaches. This module will consist of 4 classes covering the follow topics: (i) Introduction to quantitative genetics; (ii) Introduction to Genomic Selection and the use of mixed models; (iii) Genomic Selection and the Bayesian alphabet; (iv) Hands-on: genomic prediction in R. We will use open-sources R packages.

Phenomics
In this session, we will examine different types of phenotyping systems, data processing, data management, and data utilization for decision making using HTPP in plant breeding, with case studies from multiple crop breeding programs. Development of HTPP systems, such as ground- and aerial-based mobile systems require evaluating the traits to be measured as well as the resources available. Data processing is the key component to convert raw data, such as sensor observations and digital images to plant parameters and ultimate trait values. Data management is also critical in the overall research process to provide efficient data access. Finally, examples of HTPP use within crop breeding and plant science are presented. This session provides an overview of the entire HTPP process from system conception to decision making within research programs based on phenomics data collected in high throughput.

Marker Assisted Selection
This module will introduce students to theory and methods of the use of molecular markers with a focus on their applications in modern plant breeding. Students will have hands-on activities and experience on analyzing DNA/RNA
Graduate level Course

sequencing data and designing molecular markers for target QTL and/or candidate genes of interest. Throughout the module, students are expected to learn the various techniques of molecular markers and further practical applications for new cultivar development through marker-assisted selection.

Integration of GS and Crop Modeling
In this module students will learn about an integrative methodology that links physiology and genomics to enable prediction for genotype x management x environment systems. This module builds upon modules 1 through 3 [GS, Phenomics, Marker assisted selection]. Through experiential learning the students will learn about crop modeling as integrators of physiology, agronomy, and the environment, how to use phenomics to train crop models, and how to integrate genomic selection and crop models through approximate Bayesian computation. We will use open-sources R packages.

Chromosome manipulation and Mutagenesis
This module is designed to introduce students to plant chromosome structures, polyploidy, complex plant genome composition, and the application of polyploidy and mutagenesis in plant breeding. Students will learn how chromosome number and structure variations are associated with abnormal inheritance patterns and disorders, and they will be able to identify appropriate cytogenetic and molecular techniques to study chromosome manipulations and random mutagenesis. The module will focus on the application of methods and techniques with the goal of generating genetic variation in plant breeding programs.

Gene Editing
This module will introduce the use of genetic engineering to manipulate genomes. We will cover basic methods as well as state-of-the-art literature on genome editing. Hands-on activities and lectures will be the teaching strategies used.

Plant tissue culture techniques
These sessions will cover the commonly used plant cell and tissue culture techniques and how they are applied in breeding programs for genetic improvements and cultivar development. These techniques include a) embryo rescue to recover hybrids from interploid or genetically wide crosses that ordinarily would be inviable in vivo; and b) callus and protoplast cultures to enable selection of somatic variants, protoplast fusions to create somatic hybrids and cybrids, and transgenic or gene edited plants.

Attendance and Make-Up Work
“Requirements for class attendance and make-up exams, assignments, and other work in this course are consistent with university policies that can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx”

Online Course Evaluation Process
“Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/”

Academic Honesty
“UF students are bound by The Honor Pledge which states, “We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: “On my honor, I have neither given nor received unauthorized aid in doing this assignment.” The Honor Code (http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/) specifies a number of behaviors that are in violation of this code and the possible sanctions. Furthermore, you are obligated to report any condition that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with the instructor or TAs in this class.”
Software Use:
All faculty, staff, and students of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate.

Services for Students with Disabilities
“Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, www.dso.ufl.edu/drc/) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.”

Campus Helping Resources
Health and Wellness:
U Matter, We Care: If you or a friend is in distress, please contact umatter@ufl.edu or 352 392-1575 so that a team member can reach out to the student.

Counseling and Wellness Center: http://www.counseling.ufl.edu/cwc/Default.aspx, 392-1575; and the University Police Department: 392-1111 or 9-1-1 for emergencies.

Sexual Assault Recovery Services (SARS) Student Health Care Center, 392-1161. University Police Department, 392-1111 (or 9-1-1 for emergencies). http://www.police.ufl.edu/