New tools in plant disease assessments

Mathews L. Paret, paret@ufl.edu

- Narrower bands (10-20 nm).
- Hundreds of bands

Multispectral imaging (MSI)

Multi-spectral sensor

- Three to ten bands
- Eg. red, green, blue, near-infrared, and short-wave infrared.

GISGeography.com

Giannoni et al. 2018

Multispectral sensor on UAV

DIRECT DATA COMPARISON BETWEEN SATELLITE AND DRONE IMAGERY

Healthy

Stressed

GNDVI

RNDVI

GNDVI

RNDVI

RENDVI

Stress Index

RENDVI

Stress NDVI

Green NDVI, Red NDVI, Red edge NDVI and Stress Index for **conventional (grey)** and **UAV-assisted (black) scouting** at two flight dates.

Different letter above the bar indicates significant difference at P= 0.05.

06/09/2017

STRESS

Total map area: 130.0 acres, Vegetated area: 68.4 acres.

06/17/2017

STRESS

Total map area: 118.8 acres, Vegetated area: 60.3 acres.

min - max, Area : acres, in %

Raman spectroscopy

Raman spectroscopy as an early detection tool for rose rosette infection

Charles Farber¹ · Madalyn Shires² · Kevin Ong² · David Byrne³ · Dmitry Kurouski^{1,4}

Annenium nitrite Annenium nitrite (© <) Annenium nitrite Annenium nitrite Annenium nitrite Agilent Resolve spectrometer - 830 nm laser

Table 1 Vi	Table 1 Vibrational band assignments for rose leaf spectra				
Band	Vibrational mode				
520	v(C–O–C) glycosidic				
740-747	γ(C–O–H) of COOH				
905-918	ν (C–O–C) in plane, symmetric				
1000	In-plane CH ₃ rocking of polyene				
1048	ν (C–O) + ν (C–C) + δ (C–O–H)				
1118	Sym v(C–O–C), C–O–H bending				
1157	C-C stretching; v(C-O-C), v(C-C) in glycosidic link- ages, asymmetric ring breathing				
1186	ν (C–O–H) next to aromatic ring + σ (CH)				
1216	δ(С-С-Н)				
1264	Guaiacyl ring breathing, C-O stretching (aromatic)				
1287	δ(С-С-Н)				
1327	δCH ₂ bending				
1354	$\delta(CH_2) + \delta(CH_3)$				
1386	δCH ₂ bending				
1441	$\delta(CH_2) + \delta(CH_3)$				
1488	$\delta(CH_2) + \delta(CH_3)$				
1526	-C=C- (in-plane)				
1610	ν (C–C) aromatic ring + σ (CH)				
1669	=O stretching, amide I				
1720	C=O stretching				

Raman Spectroscopy vs Quantitative Polymerase Chain Reaction In Early Stage Huanglongbing Diagnostics

Lee Sanchez¹, Shankar Pant^{2,5}, Kranthi Mandadi^{2,3 \vee &} Dmitry Kurouski^{1,4 \vee v}

Figure 1. Leaf samples collected from greenhouse healthy (GHH) and field healthy leaves (IFH), as well leaves from both orange and grapefruit trees with nutrient deficit (ND) symptoms and asymptomatic HI (Figure panels for ND and asymptomatic HLB were adapted from Sanchez *et al.*, 2019, Anal. Bioanal. Ch

Figure 4. Raman spectra collected from leaves of GHH (green), IFH (gold), asymptomatic HLB infection (red), and nutrient-deficit (blue) symptoms in (**A**) grapefruit and (**B**) orange trees. Spectra are normalized on the CH_2 vibrational band that is present in nearly all classes in biological molecules (marked by asterisks (*)).

Introduction to Neural Networks

- Neural Network: a type of machine learning model ut Nodes of Monotestions are being established for
- 2. To each of these connections, the node randomly assigns a number (weight) cal neurons
- 3. The image datasis parsed into matrix form, and inputted as vectors to the network Dendrites
- 4. When the network is active, the node receives a different data item a different number over each of its connections and multiplies/it by the associated weight. Soma Soma _____
- 5. The resulting products are added together yielding a single number
- 6. The weights and thresholds are continually adjusted during each **epoch** until training data with the same labels consistently yield similar outputs.

node: receives a different data item over each of its connections and multiplies it by the associated weight

denoted by the symbol,
 in the diagram above

weight: the parameter within a neural network that transforms input data within the network's hidden layers

epoch: A full training pass over the entire dataset such that each example has been seen once

Raw Dataset

Sample underside leaf images. (a) Healthy tomato. (b) Bacterial spot. (c) Early blight. (d) Cold injury. (e and f) Little leaf. (g) Zn Nutritional disorder. (h and (i) Spider mite damage. (j) Tomato yellow leaf curl.

Methods

Step 3: Building of CNN

Qualitative Analysis: Confusion Matrices

48

-16

-	42					
		Part of Plant		Accuracy	Loss	
_	36	All		90.46% (+- 2.12%)	0.64	
		Separated	Fruit	97.05 (+- 1.04%)	0.26	
-	30	by part of Plant	Under side leaf	96.50 %(+- 1.09%)	0.29	
_	24		Upper side leaf	95.57% (+- 1.14%)	0.48	
		KFold Average Scores for All CNN Models From Scratch				
-	18					
_	12					

Analytical Biochemistry 546 (2018) 72-77

Recombinase polymerase amplification applied to plant virus detection and potential implications

Binoy Babu^{a,b,**}, Francisco M. Ochoa-Corona^c, Mathews L. Paret^{a,d,*}

B. Babu et al.

Recombinase Polymerase Amplification (RPA)

Sample Preparation for RPA

Ready to use Agdia "AmplifyRP XRT" RRV Pellet which includes all amplification reagents

Add 23 μ L of PD1 Buffer into the RPA pellet (Rehydration step – 1min)

Grind plant samples (0.1 g) with 1:1 (w:v) GE ELISA Buffer. Extract diluted 1:4 in sterile deionized water

Add 1 μL of diluted sample to the PCR tubes with RPA reaction.

Carlos Basello Carlos Car Carlos Carl

RRV infected plant 1

RRV infected plant 2

Healthy plant control

Negative control

Run RPA (39 C, 15-30 min) Battery powered to last 4 h and portable 8 samples at a time

Summary

Method	Approach	
Multi-spectral sensor	Reflectance from light for identifying areas with reflectance differences indicating hotspots of biotic and abiotic issues	Piet (s, y)
Hyper-spectral sensor	Above + identifying areas with unique reflectance differences for certain diseases.	Piel (h, y) Piel (h, y) Piel (h, y) Understand Windowski Multisectral Imagine (MSI)
Raman spectroscopy	Laser induced vibrational spectra identifying chemical differences in plants that could be unique to certain diseases	
Recombinase Polymerase Amplification	Very specific and sensitive field-based DNA/RNA detection of pathogens	8. Rolv er el. A Exo-probe 5' 46-52 bp Filor 5' Biocher 5' Bio
Machine Learning and Artificial Intelligence (AI)	Neural network and image/object-based detection for disease identification	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c