Role of Precision Agriculture in the BMP

Lakesh K. Sharma, Ph.D. Assistant Professor Soil Fertility and Sustainable Nutrient Management Specialist State BMP Coordinator

Technology use in agriculture

Global Positioning Satellite. (U.S. Air Force image)

RTK (real-time kinetic) GPS base tower. (Photo courtesy of Rural Tower Network)

Comparison of yields among yield monitor adopters and nonadopters

*indicates statistically significant difference of ratios, at 10% levels. Source: Agricultural Resource Management Survey, USDA, ERS/NASS. Comparison of yields among Global Positioning System mapping adopters and nonadopters

Bushels/acre of grain

*Indicates statistically significant difference of ratios, at 10% levels. Source: Agricultural Resource Management Survey, USDA, ERS/NASS.

Comparison of yields among VRT-fertilizer adopters and nonadopters

*indicates statistically significant difference of ratios, at 10% levels. VRT= variable-rate technology. Source: Agricultural Resource Management Survey, USDA, ERS/NASS.

Variable Rate Fertilization

Illustration of individual row control for a planter to reduce overlap and skipped areas. The technology improves planting efficiency while reducing the amount of planted seed

http://www.slideshare.net/shrinivascs/svs-ii-semi

Economics

Cost saving in number of passes Saving by GPS guided tractor per care= $5 \times 1000 = 5000 Possible saving by GPS guided tractor = 20×1000 =\$20000

Cost saving in fertilizer application Individual nozzle shut off saving in corn - \$32/acre In potato total saving= 1000 x 35 = \$35000

- More efficiency
- Less environmental pollution
- More energy efficient

• • • • • • • • • • • • • • •

Gird/Zone Sampling

http://people.oregonstate.edu/~machados/Agronomy/Working%20folder/MachadoFinalReport.pdf

http://vegetables.wisc.edu/download/archives/potatoes/Precision-Agriculture-in-Potato-Production-GD-Morgan-TR-Connell-AE-MacGuidwin-WG-Schmitt.pdf

Lime Variable-Rate vs. Fixed-Rate Experiment - Heck Farm

 VR usually improved soil pH correction of acidic areas

FIXED - ENTIRE FIELD

VRT - GRID SAMPLING

VRT - SOIL TYPE SAMPLING

- VR reduced field lime use (60%)
- Lack of yield response possibly due to high pH subsoil and high smallscale soil pH variability

Bianchini and Mallarino, 2002 Iowa State University

http://www.agronext.iastate.edu/soilfertility/presentations/soilphliming04.pdf

Yield

Valley City - Zones for Barley Yield (2001)

How do you manage multiple years of yield data

Managing multiple yield data using rank & frequency

Assign rank for each year

Soil test classifications indicate whether or not adding a nutrient is likely to result in a yield increase.

Soil test: Very low low medium/optimum high very high

Fertilizer Added

Select Region

Organic Matter

Cover Crop

Potato Price (\$/cwt)

Nitrogen Cost (\$/lbs)

N Rate 174

https://rishabhrrk.github.io/nrate/

Holland Crop Circle-470

SENSOR

ACS-470

Source: Dr. Jim Schepers, NUE conference presentation, Fargohttp://nue.okstate.edu/Nitrogen_Conference2012/North_Dakota.htm

Optical remote Sensing?

Optical remote Sensing?

http://cdn.intechopen.com/pdfs-wm/46140.pdf

Dollar Benefit Involved!

In Soybean farm in Iowa, "NDVI Satellite" images used to find weeds problem. After analyzing the images through a decision support system 50% of the field found weed affected. However, the remaining 50% the field did not contain any weeds issue or did not contain enough weed density to be worth spraying (Shaw, 2005).

"Calculated cost savings was in range of \$92.24 per hectare to \$104.76 per hectare in soybean.

12-40-0-10S-1Zn Detail of MicroEssentials SZ Granule; Sulfur & Zinc Distributed Throughout

Detail of MicroEssentials S10 Granule; Nitrogen, Phosphorus & Sulfur Distributed Throughout

DESIGNER FERTILIZERS-Microessentials

MES concept was developed by a team of researchers at University of Adelaide in Australia led by Dr. Mike McLaughlin.

They made Zn maps of fertilizer granules and concluded that diffusion from the granule would often be inadequate to support efficient plant nutrition at low practical rates.

Comparison of ME products and blends at two locations in IA. (Sawyer, 2010).

P was all the same, except for SP control where no

P was applied

Treatment	Leaf S%	Leaf P %	Corn Yield, bu/acre
O S	0.16	0.33	239
MES-10	0.16	0.33	244
AMS-10	0.16	0.32	241
SP control	0.14	0.29	224
MES-30	0.17	0.32	225
AMS-30	0.17	0.32	244
MAP-30	0.17	0.32	229

Effect of P source on total marketable potatoes, MN Rosen, McNearney and Bierman

Treatment	P205 rate, lb/acre	Total marketable potato cwt/acre
Control	0	510
ΜΑΡ	60	532
ΜΑΡ	120	563
MES-15	60	567
MES-15	120	572
MESZ	60	579
MESZ	120	562
LSD 5%		NS

Questions

Contact information

Lakesh K. Sharma, Ph.D. Assistant Professor | Soil Fertility and Sustainable Nutrient Management Specialist | State BMP Coordinator Soil and Water Sciences Dept. | University of Florida | IFAS 2181 McCarty Hall A,Gainesville, FL 32611-0290 Office: 352-294-3167 Cell: 352-363-7040 Email: lakesh.sharma@ufl.edu