Crop Management Strategies: Balancing Yield and Quality

New Technology for Commercial Production (VIII)

Daniel I. Leskovar, Ph.D.

Texas A&M AgriLife Research & Extension Center at Uvalde

UF, Gainesville - February 26, 2020

Outline

- Quality: Phytochemicals, sugars, sensorial
- Stress: oxidation antioxidation
- Factors affecting Yield & Quality = Genetics, Environment, Management

Species	Strategies
Melon	Soils, Tillage
Watermelon	Irrigation, Nitrogen,
Artichoke	Plant Density Tunnol, Open field
Spinach	Grafting
Tomato	Conventional-Organic
	Bioregulators

• Discussion

Phytochemicals

Polyphenolics

Flavonoids

- Anthocyanins
- Quercetin
- Luteolin

Eggplant, red vegetables (cabbage, radish, onion) Onion, Kale, Broccoli, Turnip, Pepper Pepper, Tomato, Eggplant, Garlic, Onion, Celery

Phenolic acids

- Caffeic, chlorogenic Artichoke, Potato, Sweet Potato

Carotenoids

- β-carotene
- lycopene
- lutein

Carrot, Melon, Eggplant, Sweet Potato, Kale Watermelon, Tomato Spinach

...Phytochemicals

Vitamin C

Pepper, Tomato

Dietary Fiber

Cruciferous crops, artichoke

Organo sulfur ➤ Glucosinolates ➤ Thiosulfides

Cruciferous crops Allium crops (Onion, Garlic & Leek)

Folates

Cruciferous crops, Spinach

Selenium

Cruciferous crops, Allium crops

Carotenoids in Vegetable Species

	Alpha-	Beta-	Lutein +	
	carotene	carotene	Zeaxanthin	Lycopene
Crop		(µg∙	g ⁻¹)	
Asparagus	0.1	4.9	-	-
Snap Beans	0.7	3.8	6.4	0
Broccoli	0	7.8	24.5	0
Cabbage	0	0.7	3.1	0
Carrot	46.5	88.4	0	0
Carrot, A-plus cv.	106.5	182.5	0	0
Celery	0	1.5	2.3	0
Collards	2.4	33.2	-	-
Kale	0	92.3	395.5	0
Turnip Greens	0	45.8	84.4	0
Cucumbers	0.1	1.4	0	0
Lettuce	0	1.9	3.5	0
Melon	0.3	16	0.4	0
Okra	0.3	4.3	3.9	0
Onion	0	1.2	-	-
Peas	0.3	3.2	13.5	0
Peppers, Sweet	0.2	2	-	-
Pumpkins	48	69.4	0	0
Spinach	0	56	119.4	0
Squash	0	0.9	2.9	0
Sweet Corn	0.3	0.3	8.8	0
Sweet Potato	0	91.8	0	0
Tomato	1.1	3.9	1.3	30.3
Watermelon	0	3	0.2	48.7

Carotenoids

- Light harvesting in photosynthesis
- > Protection of plants from photo-oxidation (β -carotene)
 - Excess energy dissipation
- > Pigmentation
- > Essential components of the human diet
- Beneficial health-promoting compounds
 - cancer heart disease
 - immune system macular disease

Adapted from Apel & Hirt (Annu. Rev. Plant Biol. 2004

Can we increase the levels of phytochemicals in Fruits & Vegetables ?

Can we define optimum conditions to maximize the biosynthesis of phytochemicals ?

Difficult because differences in:

Old vs New varieties Fresh weight vs. Dry weight soil Nutrient management Irrigation systems and management Maturity (harvest times) Protected vs open field environments

$G \times E \times M \implies GROWTH$, YIELD & QUALITY

Genetics

- Variety

Environmental

- Light
- Temperature
- Soil type
- Rainfall
- O₂
- Radiation

Crop Management

- Irrigation
- Nitrogen
- P, Ca, K, S, Se
- Salinity
- Compaction
- Grafting
- PGR's
- Biostimulants

- Cultivation
 - Tunnels, GH
 - Open field
- Organic vs.
 conventional
- Plant population
- Harvest time

$G \times E \times M$: MELON

G x E x M: WATERMELON

IMPROVED IRRIGATION TECHNOLOGIES

Drip

SDI

PLANT DENSITY: SPINACH

Low plant density – 40 " bed 2 cuts/season High plant density – 80 " bed Several cuts /season – babies/teen size Improved genetics (R to White Rust)

ORGANIC SOIL AMENDMENTS

Integrating HS soil amendments with deficit irrigation could provide growers an optional practice for managing watermelon growth in water-limited regions and organic matter degraded soils.

TOMATO GRAFTING & ROOTSTOCKS

Grafting can improve heat stress tolerance, disease resistance, yield, and quality in protected and open field systems – conventional and organic - in Texas

- Rootstocks screening
- Scion (cv) screening
- Environmental impact

LIGHT SPECTRAL QUALITY

Screening lettuce germplasm to improve growth and anthocyanin content in hydroponic production systems

CASE STUDIES

Muskmelon: location, cultivar and soil type Watermelon: irrigation, maturity, cultivar, tillage Artichoke: irrigation and harvest time Spinach: irrigation, NUE, genetics Tomato: salinity, grafting, location-environment Vegetables: N fertilization – Deficit irrigation

Location and Cultivar - Muskmelon

Vitamin C

Vitamin C, β-Carotene & Folic Acid

Soil type

Clay loam vs. Sandy loam

Soil type	рН	OM	CEC	К
		(%)	(meq/100g)	(kg/ha)
Clay loam	8.1	1.4	41.0	1053
Sandy loam	7.2	0.5	8.9	502

"Clay loam with higher OM, CEC, and mineral contents improved the phytochemical contents in muskmelon compared to sandy loam"

Irrigation regimes

100% ET (0.45 GPM Tape)
75% ET (0.34 GPM Tape)
50% ET (0.22 GPM Tape)

Subsurface drip system

Irrigation rate: Impact on fruit size – Uvalde, TX

Irrigation & Maturity Impact on Lycopene content

Uvalde, TX

Lycopene

Limited irrigation and maturity increased lycopene content.

Lycopene content was higher and less variable for 3x (60-66 ug/g) than 2x (45-80 ug/g).

Tractmont		Dlaidy	Lycopene (ι	Lycopene (ug/g FW)		
		Floluy	Ripe	Overripe		
Irrigation	100% ET		54.3 b	58.8 b		
Regime	75% ET		<u>57.9 a</u>	<u>62.4 a</u>		
	50% ET		55.3 ab	59.6 b		
	LSD (0.05)		2.5	2.1		
Cultivar	SF 710	2X	77.3 a	80.6 a		
	RWM 8036	2X	50.1 cd	62.3 b		
	Allsweet	2X	43.5 e	45.7 c		
	Sugar Lee	2X	48.2 cd	49.0 c		
	SWD 7302	2X	47.2 de	46.8 c		
	SS 5244	3X	62.2 b	65.9 b		
	SWT 8706	3X	58.8 b	63.8 b		
	Sugar Time	3X	62.5 b	66.3 b		
	Tri-X-Sunrise	3X	51.8 cd	61.6 b		
	LSD (0.05)		4.6	6.2		

Lycopene

Strip vs. Conventional Tillage

 ✓ Across three years, strip tillage increased marketable yield mostly in the fruit size category <u>11–17 lbs</u>, which was about 50% of the total yield.

Leskovar, Othman, Dong (Soil & Tillage Research, 2016)

Strip tillage improved sugar content

		Sugar content (°Brix)		
		2012	2013	2014
Tillage (T)	Conventional (CT)	11.1	11.2	11.6
	Strip (ST)	11.6	11.7	12.0
Irrigation (IR)	1.00 ET	11.2	11.3	11.6
	0.75 ET	11.4	11.5	11.8
	0.50 ET	11.5	11.6	11.7
P-value	т	0.02	0.001	0.03

Citrulline in watermelons and Health

1998 Nobel Prize : Robert F. Furchgott, Louis J. Ignarro, and Ferid Murad Source of endothelial nitric oxide (NO) synthesis against cardiovascular diseases

Goal: Develop varieties with the highest citrulline accumulation

Irrigation & Harvest Time - Artichoke

Irrigation rate: 100% ETc 75% ETc

50% ETc

Harvest time: Early, Middle and Late

Total Phenolics Deficit irrigation significantly increased total phenolics as harvest season progressed.

Average yield decreased by 27% with deficit irrigation.

Phenolics

Shinohara, Agehara, Yoo & Leskovar (2007)

Irrigation - Spinach

Ascorbic Acid & Carotenoids

	Ascorbic acid		Carotenoid (µg/g fw)			
Irrigation rate	(µg/g fw)	β-carotene	Lutein	Neoxanthin	Violaxanthin	Total
100% ETc	172	15.7	64.2	18.4	41.7	141
75% ETc	175	16.1	67.5	20.8	43.9	148
50% ETc	217	19.8	71.5	20.5	45.8	157
LSD _{0.10}	35	3.2	4.6	1.6	NS	11

Phytonutrients: Responses to Deficit Irrigation

Сгор	Deficit Irriga	tion Vield	Irrigation Rate	Reference
	I	пена		
Artichoke	↑ Phenolics	\downarrow	100, 75, or 50% ETc	Shinohara et al. 2014
Carrot	↔Vitamin C	\leftrightarrow	- 0.03, -0.06, or -0.12 MPa (water to FC)	Sorensen et al. 1997
Celery	↑ α-Carotene ↑ β-Carotene ⇔Thiamine	Ţ	Irrigation (404 mm) or no irrigation (248 mm)	Evers et al., 1997
Leek	↑ Vitamin C	\downarrow	-0.03 or -0.09 MPa (water to FC)	Sorensen et al., 1997
Pepper	↑ Vitamin C ↑ β-Carotene	Ļ	100 or 50% ETc	Leskovar et al. (unpublished)
Spinach	↑ Vitamin C ↑ β-Carotene ↑ Lutein	Ļ	100, 75, or 50% ETc	Leskovar et al. (unpublished)
Tomato	↑ Vitamin C ↑ Lycopene ↔β-Carotene	Ţ	100 or 20-30% FC	Zushi and Matsuzoe 1998
Watermelon	↑ Lycopene ⇔Lycopene	$\downarrow \\\downarrow$	100, 75, or 50% ETc 100, 75, or 50% ETc (3 locations)	Leskovar et al., 2004 Bang et al., 2004

Tomato Production in Controlled Environment (CE) in Arizona

Salinity & Cultivar in CE - Tomato

Lycopene

Lycopene and Quality Under control environment (CE) lycopene increased from 34% to 85%, depending on cultivar. Moderate salinity also increased fruit quality.

N rates on phytochemicals and yield ?

Vitamin C & Carotenoid

Experimental

- Field Exp. in FL (2005)
- cv. Honey Bunch
- Nitrogen: 0, 78, 157, 235, 314, 392 kg/ha

Conclusion

Vitamin C

Ascorbic acid was significantly reduced (22%) by increasing N supply.

Carotenoid

β-Carotene was unaffected by N supply. Lutein showed a trend of increasing with increasing N supply.

Simonne, Fuzere, Simonne, Hochmuth, Marshall (J. Plant Nutr. 2007)

Phytochemicals: Responses to Increased N Supply

Cron	Increasing N Su	pply	N Patac	Poforonco
Сгор	Phytochemical	Yield	IN Rales	Reference
Broccoli	↓ Glucosinolate	\uparrow	1 or 4 g/6.4 kg soil (pot)	Schonhof et al., 2007
Cabbage	 ↓ Vitamin C ↓ Glucosinolate 	$\uparrow \\ \uparrow$	0,100,200,300, 400, or 500 kg/ha (field) 125 or 250 kg/ha (field)	Freyman et al., 1991 Rosen et al., 2005
Cauliflower	↓ Vitamin C	\leftrightarrow	80 or 120 kg/ha (field)	Lisiewska and Kmiecik, 1996
Celery	↓ Vitamin C ↔ β-Carotene	\uparrow	30, 60, or 90 kg/ha (field)	Evers et al., 1997
Kale	\leftrightarrow Lutein \leftrightarrow β -Carotene	\uparrow	6, 13, 26, 52, or 105 mg/L (greenhouse)	Kopsell et al., 2007
Leek	\leftrightarrow Vitamin C	\uparrow	0, 50, 100, or 200 kg/ha (field)	Karic et al., 2005
Lettuce	↓ Vitamin C	\uparrow	50, 100, 150, or 200 kg/ha (field)	Sorensen et al., 1994
Onion	\leftrightarrow Quercetin	\leftrightarrow	112 or 192 kg/ha (field)	Mogren et al., 2006
Potato	↑ Vitamin B↓ Vitamin C	NA NA	336 or 672 kg/N (field) 45, 134, or 224 kg/N (field)	Augustin, 1975 Augustin, 1975
Tomato	↓ Vitamin C↓ Vitamin C	个 NA	0, 150, 300, or 600 kg/ha (pot) 0, 78, 157, 235, 314, or 392 kg/ha (field)	Montagu and Goh, 1990 Simonne et al., 2007

Organic vs Conventional Growing Systems

Organic Production and Demand on rise

Organic Fruits & Vegetables dominate organic sectors with sales of \$14.4 billion; up by 10.5 % (OTA survey, 2016)

Reganold and Wachter; Nature Plants, 2016

Organic Spinach Research at Uvalde AgriLife Research

Project : Improving Spinach Productivity by Developing Cultivars Adapted for Conventional and Organic production in Texas

Objectives:

- 1. Improved nitrogen use efficiency as the <u>first step toward developing cultivars</u> adapted to <u>organic</u> <u>production in Texas</u>.
- 2. Develop <u>molecular tools for marker assisted selection</u> by mapping the genes associated with enhanced nitrogen uptake and utilization

Approach:

- A panel of 355 <u>spinach world accessions</u> representing total genus diversity (44% Europe, 16% Americas, 39% Asia) from the USDA-GRIN
- Germplasm is being evaluated for biochemical traits associated with the Nitrogen Use Efficiency like free NO3 and NH4, amino acids, mineral contents (Fe, Mn, Cu, Ca) and proteins

Tomato Grafting: High Tunnel vs Open Field

Grafting and High Tunnel: Effects on Yield and Quality

Season: Spring (February - July 2017 and 2018)

Graft treatments (G) n=6

		Scion		
	Rootstock	Tycoon	TAM Hot	
2017	Estamino	TY/ES	TAM/ES	
	Multifort	TY/MU	TAM/MU	
		ΤY	TAM	

Graft treatments (G) n=6

2018

	Scion		
Rootstock	HM1823	TAM Hot	
Estamino	HM/ES	TAM/ES	
Multifort	HM/MU	TAM/MU	
	НМ	TAM	

Yield: Response to Genotypes and Environments

Grafting: maintained sugar composition and Brix /acidity ratio

Uvalde-2017

Joshi, Leskovar, Djidonou, Jifon, Masabni, Avila, Crosby (to be submitted)

Grafting: showed a decreasing trend in Vit C production

Environment: HT positively impacted fruit quality (2017)

There was a negative correlation between Yield and Quality traits for HM 2018

Summary

- Plants have evolved to produce phytonutrients as a survival mechanism.
- Improved genetics and cultural strategies applied on selected environments have major influence on yield and quality traits (phytonutrients, sugars, size) of fruits and vegetables.

Summary

- Deficit Irrigation can be easily applied through drip systems (low volume and high frequency of applications) ensuring optimal water and nutrient uptake and product quality.
- High N rates tend to decrease vitamin C with an increase in yield. High N rates are associated with luxuriant canopy growth that may reduce light interception through shading effects.
- Moderate salinity and soil type (clay) can enhance phytochemicals and increase fruit color, flavor and sweetness.

Summary

Higher crop yields tend to NOT correlate with quality and nutritional traits.

Targeting yield and quality traits through selective varieties and designed management strategies is highly possible.

Acknowledgments

Industry

- T-Tape, Netafim
- Seminis, Syngenta, Abbot & Cobb
- Novihum Tech (Germany)
- CosmoCel (Mexico)

Personnel

- Dr. Haejeen Bang
- Dr. Yahia Otman
- Dr. Shinsuke Agehara
- Dr. Desire Djidonou
- Dr. Madhumita Joshi
- Kuan Qin (Ph.D. grad student)
- Dr. Vijay Joshi
- Carrie Hensarling, Res. Tech.
- Manuel Pagan, Tech II