

The Evolution of Weed Management in Vegetable Production Systems

Nathan Boyd, PhD

Row Middle

Plastic

Planting hole

The History of Weed Management

UF HISTORY OF WEED MANAGEMENT

- Biblical references
- I passed by the field of the sluggard And by the vineyard of the man lacking sense, And behold, it was completely overgrown with thistles; Its surface was covered with nettles. Proverbs 24:30-31
- Weed management varied very little until the 18th century

UF 1900-1941

- Accidental discovery in France that inorganic salts control broadleaf weeds
- Early herbicides included copper nitrate, ammonium salts, sulfuric acid, and others for weed control in grain crops

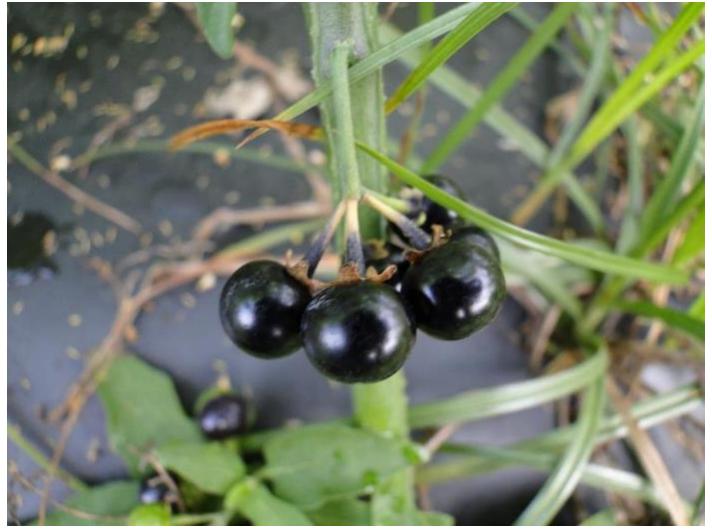
UF 2,4-D (1941)

- 2,4-dichlorophenoxyacetic acid first synthesized in 1941
- 2,4-D is highly effective, used at low doses, and cheap to produce

UF 1950s and 1960s

- Late 1950 and early 1960 atrazine, simazine, dicamba, linuron, alachlor, and DCPA were all introduced
- Transformation from tillage and hand labor to herbicides
- Introduction of Paraquat made no-tillage a viable option for the first time ever

UF 1970's and 1980's


- Glyphosate introduced in the early 1970's
- In the 1980's was the first decade where the rate of soil erosion decreased rather than increased
- Introduction of many new low input products with greater environmental safety

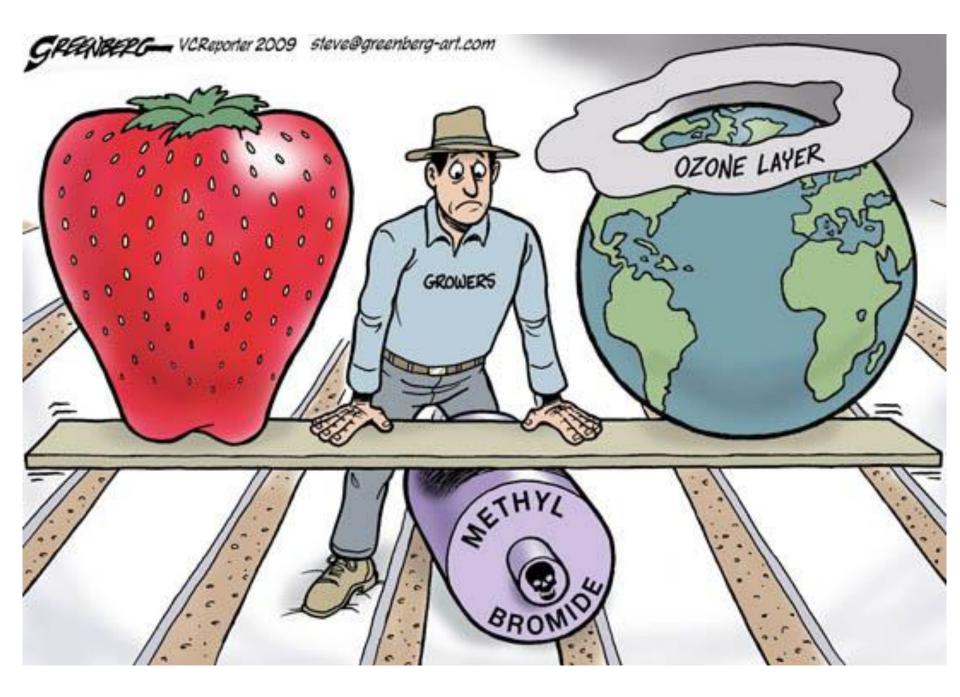
UF 1980 and 2000+

-Regulation-\$ of registration-Herbicide resistant weeds

-No. of new herbicides-Public perception of pesticides

American Black Nightshade - Paraquat

Goosegrass - Paraquat



Ragweed Parthenium - glyphosate

Ragweed Parthenium - glyphosate

Current Situation

- Limited herbicides available for specialty crops
- Limited number of herbicides in the pipeline
- Registered fumigants tend to provide poor or inconsistent weed control
- More intensive production

Fallow Program-

Planting Density

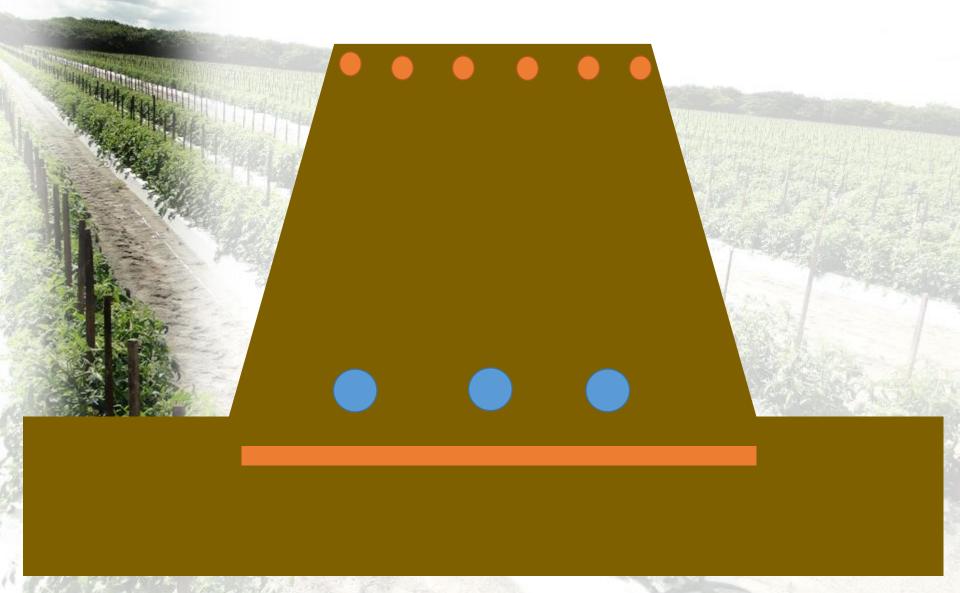
Weed Density

Fewer and smaller weeds occur In fast closing canopies

Crop Density (number & size)

Chickweed Under Cover Crops 64 Days After Planting

	Legume-Rye	Mustard	Rye
1x Seeding Rate			
3x Seeding Rate		*+	


Fallow Program-

Fumigation- Herbicides

FUMIGANTS

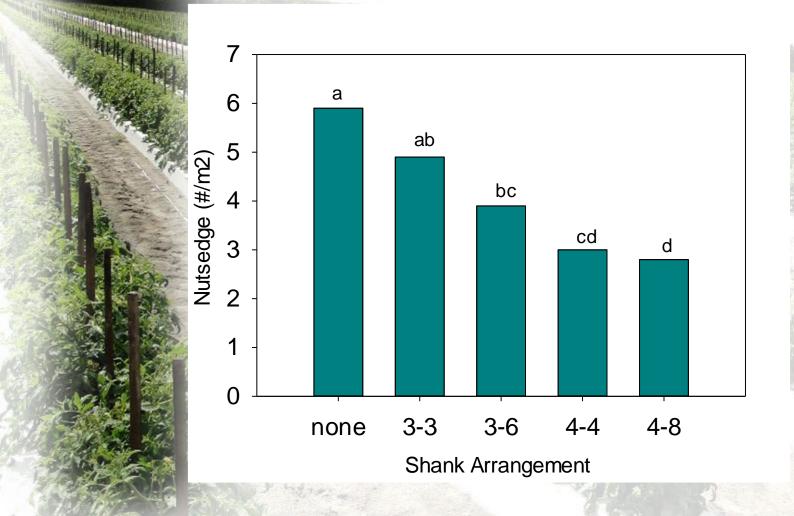
Fumigant Placement

Fumigant	Metam	Fall	Spring	
	Potassium	2014	2015	
		nutsedg	nutsedge 10 m ⁻²	
Nontreated	Nontreated	46 a <mark>91%</mark>	99 a <mark>6</mark> 5	
	4"	4 bc	35 bcd	
	12"	17 ab	53 ab	
	4 & 12"	2 c	37 bc	
DMDS	Nontreated	2 c	16 cd	
	4"	0 c	1 f	
	12″	3 c	2 cde	
	4 & 12"	0 c	1 f	
DMDS (70%) + Pic (21%)	Nontreated	0 c	1f	
	4"	0 c	1 f	
	12"	1 c	1 f	
	4 & 12"	0 c	1 f	
1,3-D (39%) + Pic (60%)	Nontreated	3 c	2 ef	
	4"	2 c	1 f	
	12"	1 c	2 ef	
	4 & 12"	0 c	1 f	

0

Fumigant	Metam	Fall	Spring	
	Potassium	2014	2015	
		nutsedg	nutsedge 10 m ⁻²	
Nontreated	Nontreated	46 a	99 a	
	4"	4 bc	35 bcd	
	12"	17 ab	53 ab	
	4 & 12"	2 c	37 bc	
DMDS	Nontreated	2 c 96%	16 cd <mark>8</mark> 4	
	4"	0 c	1 f	
	12"	3 c	2 cde	
	4 & 12"	0 c	1 f	
DMDS (70%) + Pic (21%)	Nontreated	0 c	1f	
	4"	0 c	1 f	
	12"	1 c	1 f	
	4 & 12"	0 c	1 f	
1,3-D (39%) + Pic (60%)	Nontreated	3 c	2 ef	
	4"	2 c	1 f	
	12"	1 c	2 ef	
	4 & 12"	0 c	1 f	

Fumigant	Metam	Fall	Spring
	Potassium	2014	2015
		nutsedge 10 m ⁻²	
Nontreated	Nontreated	46 a	99 a
	4"	4 bc	35 bcd
	12"	17 ab	53 ab
	4 & 12"	2 c	37 bc
DMDS	Nontreated	2 c	16 cd
	4"	0 c	1 f
	12"	3 c	2 cde
	4 & 12"	0 c	1 f
DMDS (70%) + Pic (21%)	Nontreated	0 c	1f
	4"	0 c	1 f
	12"	1 c	1 f
	4 & 12"	0 c	1 f
1,3-D (39%) + Pic (60%)	Nontreated	3 c	2 ef
	4"	2 c	1 f
	12"	1 c	2 ef
	4 & 12"	0 c	1 f

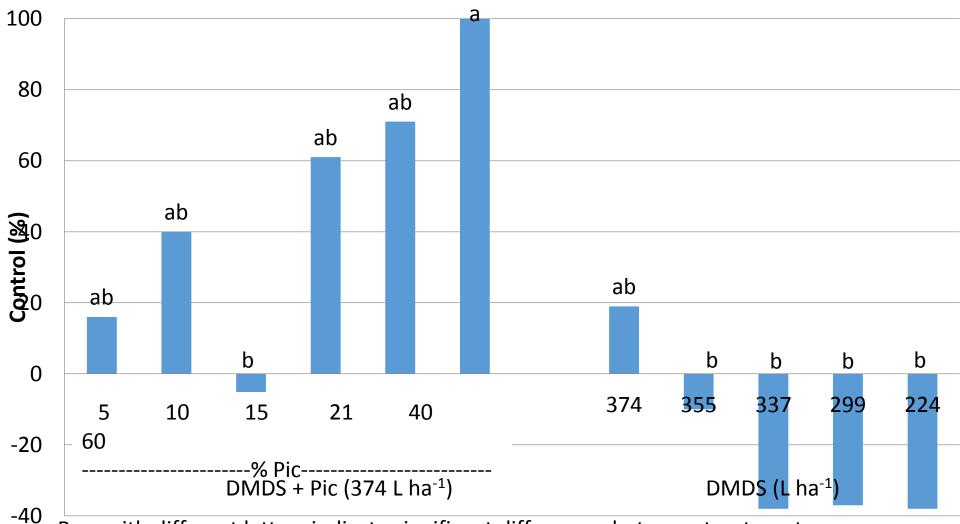


Multi-Port Trials

3 shanks – 6 streams 4 shanks – 8 streams

3 shanks – 3 streams 4 shanks – 4 streams

UF Nutsedge Counts (K-Pam)



Fumigant Rate and Ratio

Purple nutsedge, 13 WATP (Fall Experiment)

Time x treatment interaction = 0.0119; nontreated control = 152 weeds m^{-2}

Bars with different letters indicate significant differences between treatments

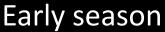
374 L ha⁻¹ (95% DMDS + 5% Pic)

Early season

Middle season

Late season

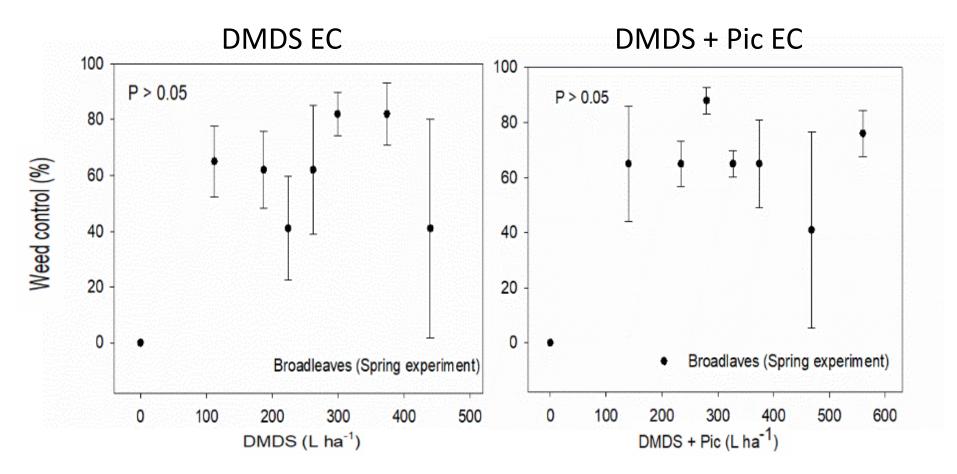
374 L ha⁻¹ (79% DMDS + 21% Pic)


Early season

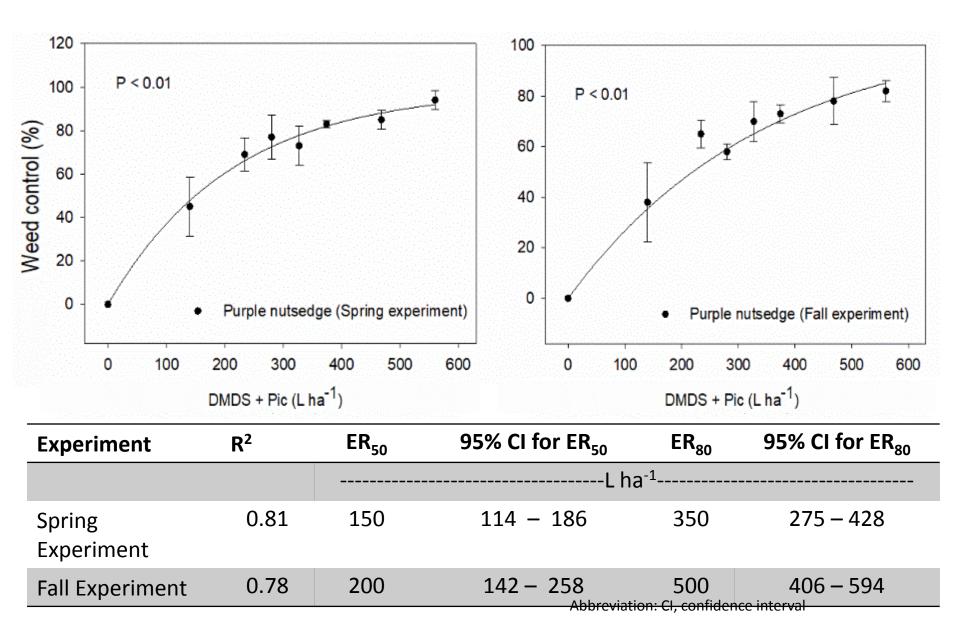
Middle season

Late season

374 L ha⁻¹ (40% DMDS + 60% Pic)



Middle season


Late season

Control of Broadleaf Weeds (Spring Experiment)

Estimated rate required to control 50% (ER_{50}) or 80% (ER_{80}) broadleaf weeds was not determined.

Purple Nutsedge Control (DMDS + Pic EC)

Late Season Weed Control (DMDS EC)

Non-fumigant control

262 L ha⁻¹ DMDS EC

440 L ha⁻¹ DMDS EC

112 L ha⁻¹ DMDS EC

Late Season Weed Control (DMDS + Pic EC)

Non-fumigant control

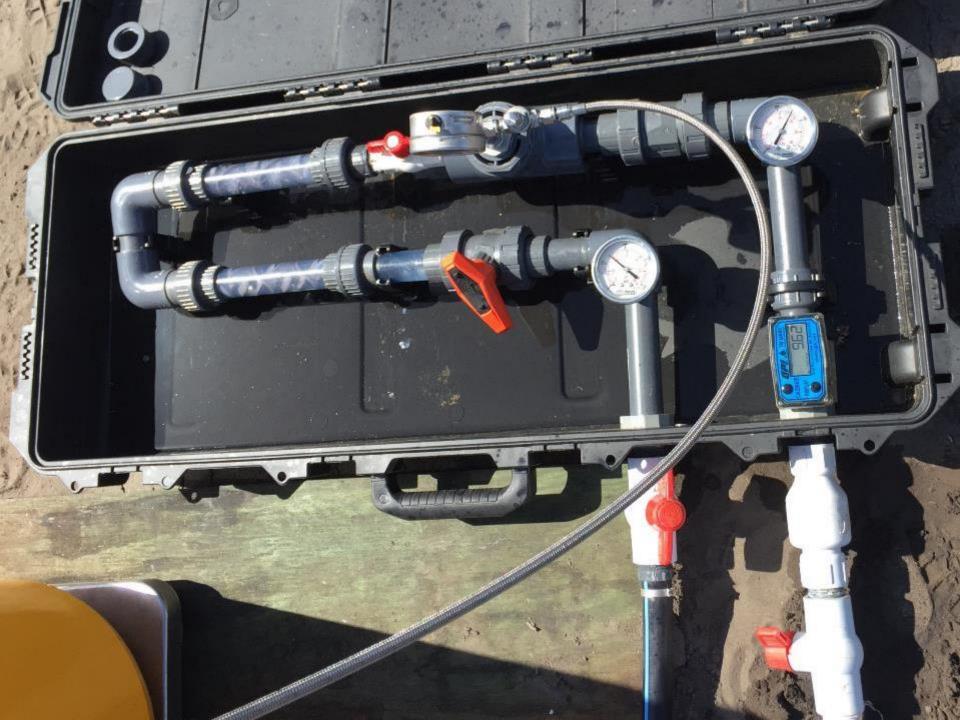
374 L ha⁻¹ DMDS + Pic EC

560 L ha⁻¹ DMDS + Pic EC

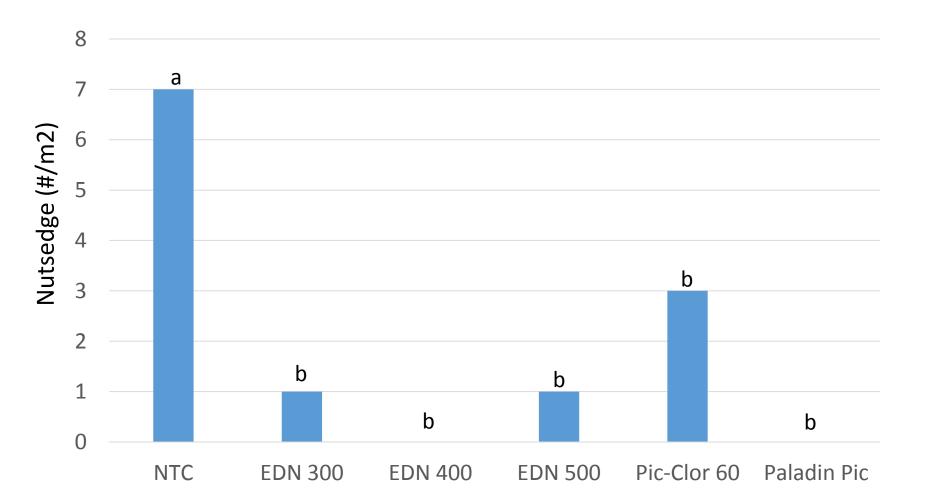
140 L ha⁻¹ DMDS + Pic EC

Fumigant Type -Ethanedinitrile (EDN)

Desirable Properties of EDN


EDN

- Boiling point: -21 C
- Vapor pressure: 515 kPa


Methyl Bromide

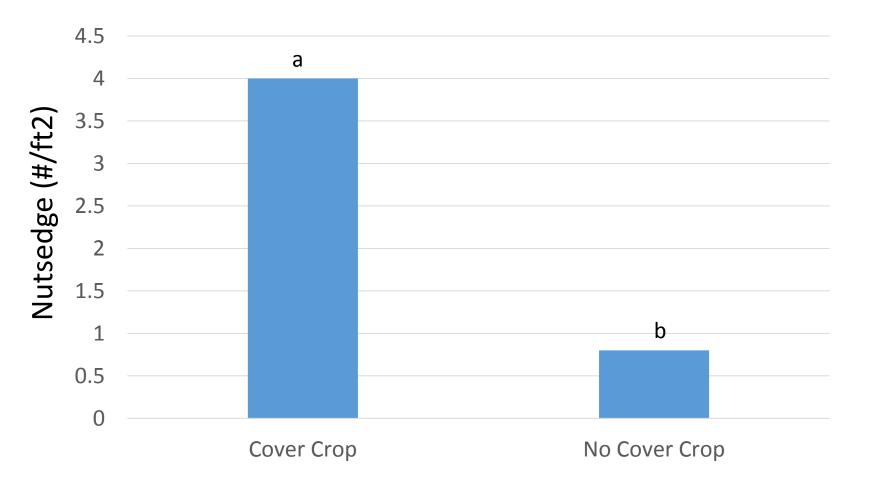
- Boiling point: 3.6 C
- Vapor pressure: 214 kPa

Nutsedge Counts

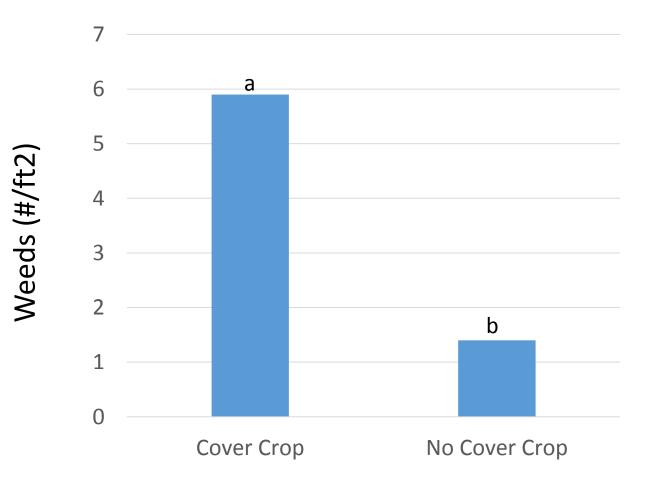
Nontreated

300 lbs EDN

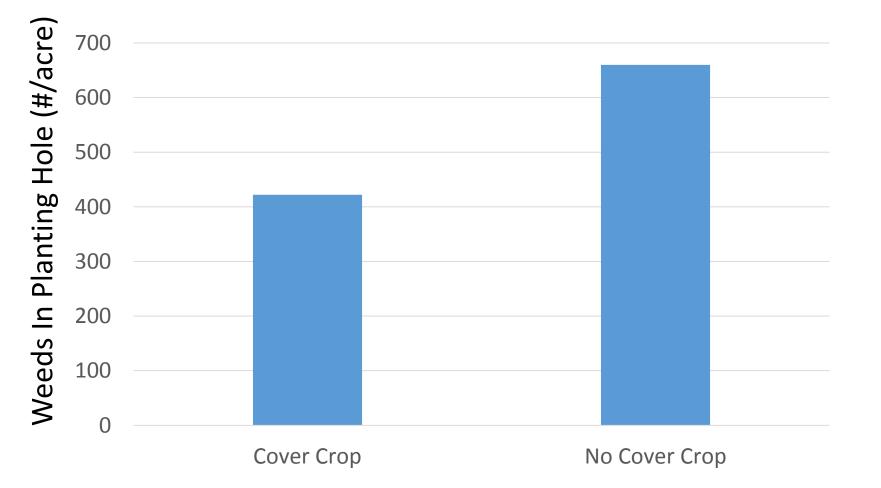
400 lbs EDN

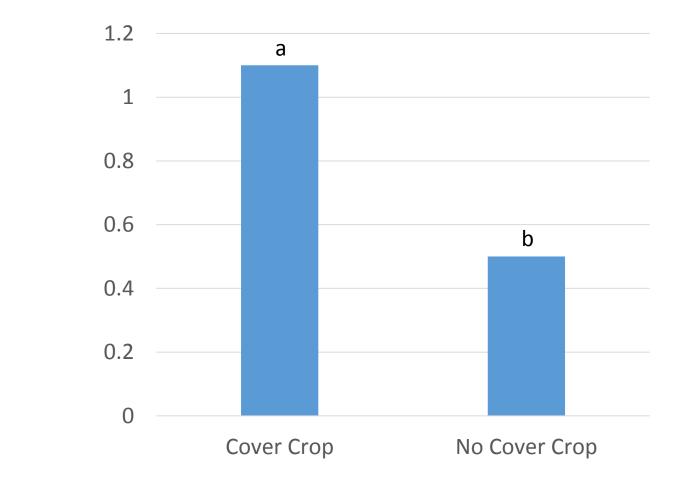

Nontreated

Pic-Clor 60


Paladin Pic-21

Cover Crops and Fumigants


Nutsedge density during the fallow period in the presence and absence of a cover crop in 2017


Broadleaf weeds in the cover crop in 2017

Broadleaf weeds in the planting hole at harvest with and without a cover crop in 2017

Broadleaf weeds in the row middle at harvest with and without a cover crop

Weeds In the Row Middle (#/ft2)

Broadleaf weeds in the planting holes at harvest averaged across sites in 2017

Nontreated

Paladin Pic-21

Pic-Clor 60

Paladin + K-Pam

Summary

- Fumigant placement can enhance weed control.
- Supplemental metam potassium or similar products can enhance weed control
- Fumigants on their own may not adequately control broadleaf weeds
- Fumigants can adequately control nutsedge if applied at the correct rate or ratio

Purple Nutsedge (Cyperus rotundus) Control in Tomato

Nathan Boyd and Jialin Yu

Introduction

- Low Density Polyethylene Films (LDPE)
 - Mono-layer polyethylene
- Virtually Impermeable Films (VIF)

• Totally Impermeable Films (TIF)

Polyethylene Polymer Ethyl vinyl alcohol Polymer Polyethylene

EXPERIMENT 1: RESULTS

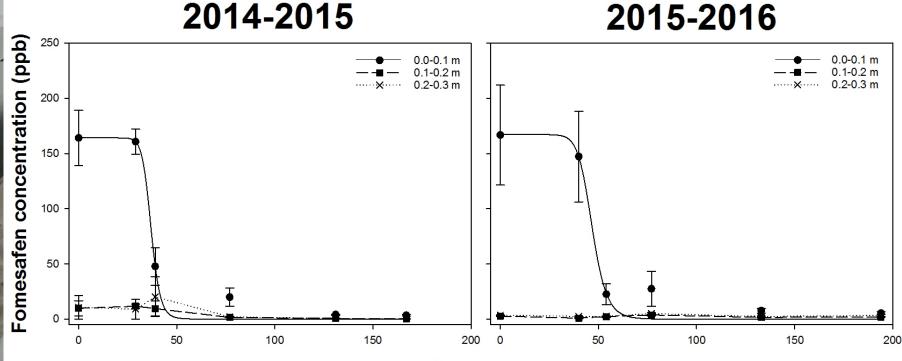
Plastic mulch	Site 3	
	3 WAT	
	# m ⁻²	
LDPE	68 a	
LDPE + halosulfuron	9 b	
VIF	21 b	
VIF + halosulfuron	1 b	
VIF releasing halosulfuron TIF	0 b 1 b	

EXPERIMENT 2: RESULTS

	Fall 2014	Spring 2015	
	# m ⁻²		
LDPE	15 a	15 a	
Blockade VIF	7 b	10 b	
Blockade VIF – No fumigant	1 d	1 d	
Total Blockade VIF	2 c	7 b	
VaporSafe TIF	1 d	6 bc	
VaporSafe TIF – No fumigant	1 d	2 cd	
P value	0.0001	<0.0001	

LDPE versus Blockade VIF: 33-53% reduction LDPE versus Blockade TIF: 53-87% reduction Blockade VIF versus Blockade TIF: 30-71% reduction

HERBICIDES


Herbicides Under Plastic Mulch

Fomesafen persistence under plastic in vegetable fields

CALL AND A CALL	A CONTRACTOR	And State And State		
	Fomesafen concentration (DAT ^a)			
Plastic mulch ^b	0 ^c	19	103	
	ppb			
None	150 (A ^e)	59 a ^f (B)	7 a (C)	
Clear	176 (A)	67 a (B)	36 a (B)	
LDPE	139	138 b	101 b	
VIF	176	177 b	117 b	
TIF	184	142 b	99 b	
p-value	0.9372	0.0005	0.0086	

Fomesafen persistence under plastic in strawberry fields

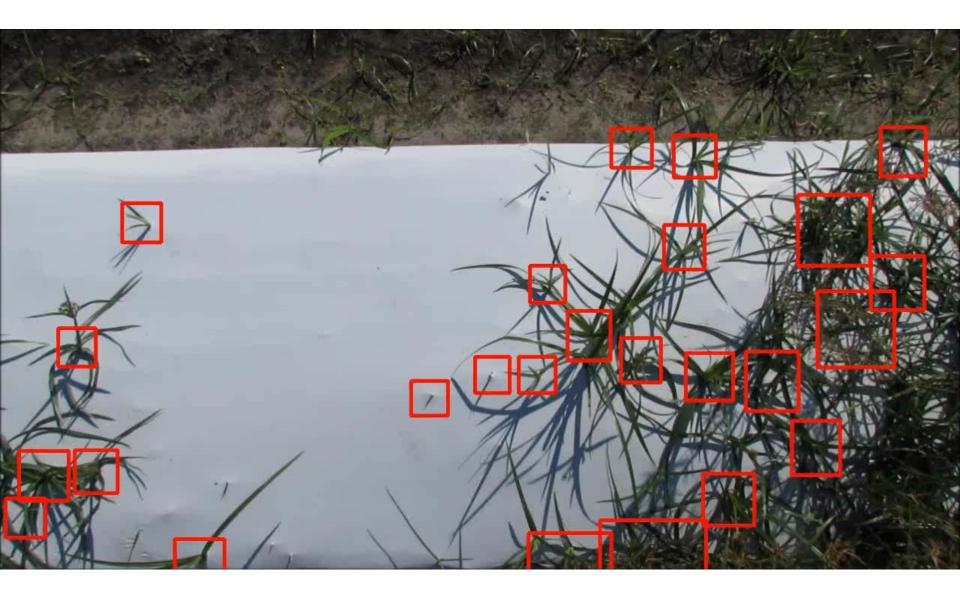
Days after treatment

Effects of application technique on weed density and crop yield

Application Technique		Weed density		Crop yield	
		Pepper	Tomato	Pepper	Tomato
		# m ⁻²		kg plant ⁻¹	
	Broadcast	0.4	1.1	0.29	1.86
	Precision application	0.4	1.1	0.31	2.20
	P value	0.7301	0.6150	0.4925	0.0891

		Spray	Excess coverage	Use
		coverage		Reduction
	Treatment	cm ²	cm ⁻²	%
10 10	Napropamide	746 b ^a	714 b	91 a
	S-metolachlor	849 a	817 a	90 b
	P value	0.0053	0.0050	0.0053

Summary


- Precision herbicide applications had no effect on crop growth or yield
- Herbicide reductions achieved using the precision applicator versus broadcast bed top applications ranged from 88-91%
- Accuracy with current version is near 100%

Potential Benefits

- A reduction in off-target applications
- Reduced herbicide usage
- Reduced crop damage
- Herbicide applications closer to transplant

Automated object detection: nutsedge weed detection

Schumann & Boyd, 2017

RESULTS

Accuracy of spray decisions based on independent validation:

- incorrect OFF:
- incorrect ON:
- correct ON or OFF: TOTAL:
- 5% (unsprayed nutsedge)
 1% (unnecessary herbicide use)
 94%
 100%

Overall accuracy for correct decisions:

- correct ON (100-1): 99%
- correct OFF (100-5): 95%

Potential herbicide saving based on % OFF decisions: 44%

Summary

- Fumigants can control nutsedge but are weak on broadleaves and grasses
- Preemergence herbicides are weak on nutsedges but can work on broadleaf weeds and grasses
- Machine vision and artificial neural networks are likely to modify horticulture dramatically.