Advances toward Mechanical Harvesting of Florida Blueberries for Fresh Markets

Jeff Williamson Horticultural Sciences Department IFAS, University of Florida

Hand harvesting is the single greatest expense for Florida blueberry production

- Florida's industry is based on fresh fruit.
- Berries are hand-picked at 2 to 4-day intervals.
- Labor supply can limit harvest operations.
- Seasonal prices can decline to a point where hand-harvesting is not profitable.
- Florida must reduce production costs to remain internationally competitive.

Mechanical harvesting presents challenges

- Marketable yield can be reduced by
 - Fruit dropped on ground during harvest
 - Harvest of immature fruit
 - Mature fruit left on the bush
 - Fruit drop between harvest intervals
 - Fruit bruising from harvester
 - Plant injury from harvester

UF FI OR IDA

Machine Harvesting of Blueberries:

At least 6 U.S. companies offer O-T-R mechanical harvesting equipment (from Dr. Fumi Takeda, USDA)

Haven Harvesters

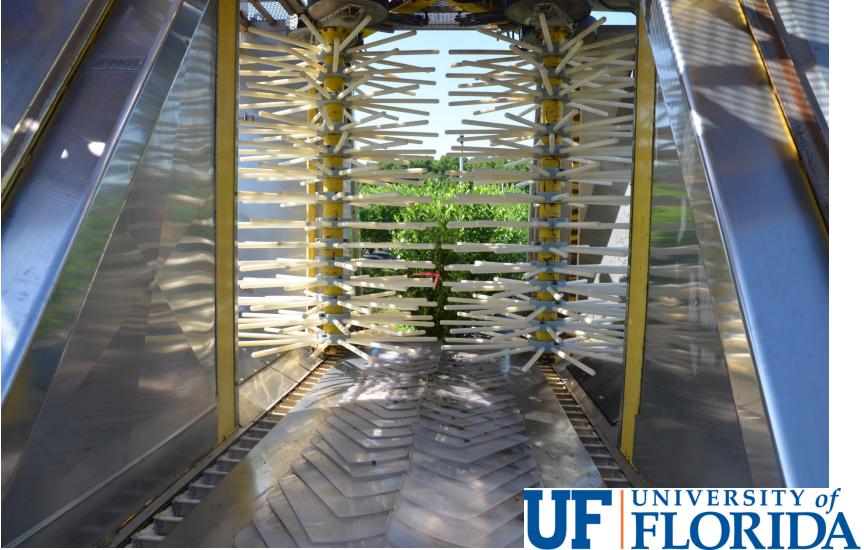
Littau Harvester

A&B Packing

Oxbo International

AG Harvesters

BlueLine Manufacturing


Over-the -row blueberry harvesters

 Over-the –row harvesters are expensive and cost prohibitive for many medium to small sized blueberry farms.

Berries dropping to catch plates are a major source of bruising

Inside an over-the-row blueberry harvester

Berries dropping into lugs are another source of bruising

Berries dropping into lugs. Note: some immature berries

Front of BEI harvester- catch plates are angled up toward the middle, several inches above the soil surface

UF FLORIDA

Bed Configuration

- Raised beds bring the catcher plates closer to the base of the crown.
- Bed height varies.
- Beds 12 to 18 inches wide at the top allow catcher plates to be lower on the plant.
- Wider beds should taper-off at edges.
- Pine bark beds?
- Remove suckers and low-hanging shoots from lowest 14" of plant.
- Keep crowns narrow

Wide crowns result in excess ground drops

TTF UNIVERSITY *o*

Narrower crowns result in fewer ground drops

Catch plates

Beds should taper-off at the shoulders

Plant Spacing

- Minimum of 9 -10 ft. between-row spacing.
- Need a minimum of 30' clearance at end of rows for equipment turn around.
- Periodic row breaks (at 400 ft) suggested for unloading harvester, etc.
- In-row spacing minimum of 3 feet between plants.
 - Exact spacing may depend on cultivar and site.

What is a good mechanical harvestable blueberry cultivar?

Plant architecture

 Good anchorage, upright, narrow base, not too dense

UF FLORIDA

'Meadowlark'- an example of narrow crowns

Timing

- Even, condensed maturity period
- Fruit holding ability on bush


Scar

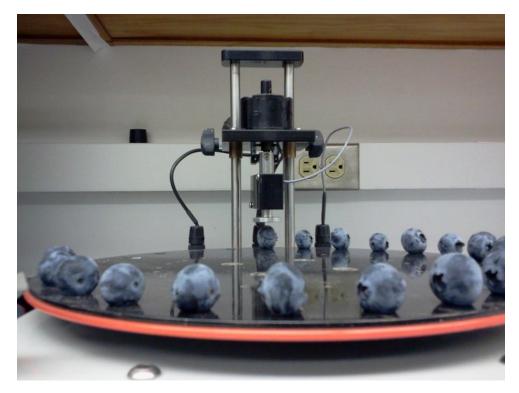
• Small, dry stem scar

Detachment

Low detachment force for mature blue fruit

Clusters/Stems

- Loose clusters
- No stem retention


Color

• Full color – no green or red on stem end

Firmness

- High firmness
- Crisp fruit?

Preliminary Studies of Mechanically Harvested Blueberries for Fresh Markets in Florida

Jeff Williamson, Steve Sargent, and Jim Olmstead

MeadowlarkTM 'FL01-173' – (USPP # 21,553)

- Part sparkleberry
- Early bloom, starts ripening ≈ 10 days before 'Star'
- Very upright growth
- Very open fruit clusters
- High yield potential
- Larger scar, particularly on young plants

'Farthing'(USPP # 19,341)

- Vigorous, compact growth habit, good survival
- Blooms mid-late (between 'Emerald' and 'Star')
- High yield potential, long picking season
- Very firm fruit
- Poor color with large crop

'Sweetcrisp'(USPP # 20,027)

- Higher chill requirement (Gainesville-north)
- Crisp flesh texture, very sweet taste
- Very vigorous, sprawling growth habit
- Blooms 1 week before and ripens with 'Star'
- Medium yield potential

'Sweetcrisp'

'Meadowlark'

'Farthing'

Fruit grading on packing line

UF FLORIDA

Seasonal Packout of three SHB cultivars harvested by hand and by machine

'Farthing'

Harvest Method	Marketable (%)	Immature (%)	Soft (%)
Hand	94.3	4.5	1.2
Machine	80.5	17.3	2.2
Significance	0.0039	0.0051	0.0356

'Meadowlark'

Harvest Method	Marketable (%)	Immature (%)	Soft (%)
Hand	92.1	6.2	1.7
Machine	84.1	11.9	4.0
Significance	0.0058	0.0133	0.0005

'Sweetcrisp'

Harvest Method	Marketable (%)	Immature (%)	Soft (%)
Hand	95.3	3.7	1.0
Machine	77.4	20.6	1.9
Significance	0.0030	0.0006	0.0682

UF FLORIDA

Combined seasonal packout for 'Sweetcrisp', 'Meadowlark' and 'Farthing'

Harvest method	Marketable	Immature	Soft
Hand	93.9	4.8	1.3
Machine	80.7	16.6	2.7
Significance	0.0001	0.0001	0.0008

Visual quality and firmness of blueberry fruit hand or

mechanically harvested then stored for 7 or 14 d at 1°C

	Hand harvested and stored			Mechanically harvested and stored				
	7 days		14 days 7 days		14 days			
Cultivar	Appear -ance	Soft (%)	Appear- ance	Soft (%)	Appear- ance	Soft (%)	Appear- ance	Soft (%)
Mlark	4.0	15.0	2.0	10.0	4.0	25.0	2.0	32.5
Farthing	4.0	10.0	3.0	30.0	4.0	25.0	2.0	75.0
SwCrisp	4.0	10.0	2.9	15.0	4.0	42.5	2.0	70.0

1 = poor, 5 = excellent, 3 = limit of marketability

Visual quality and firmness of blueberry fruit hand or

mechanically harvested then stored for 7 or 14 d at 1°C

	Hand harvested and stored			Mechanically harvested and stored				
	7 days		14 days	14 days 7 days		14 days		
Cultivar	Appear -ance	Soft (%)	Appear- ance	Soft (%)	Appear- ance	Soft (%)	Appear- ance	Soft (%)
MLark	4.0	15.0	2.0	10.0	4.0	25.0	2.0	32.5
Farth	4.0	10.0	3.0	30.0	4.0	25.0	2.0	75.0
SwC	4.0	10.0	2.9	15.0	4.0	42.5	2.0	70.0

1 = poor, 5 = excellent, 3 = limit of marketability

Summary

- Significant packout losses occurred from the harvest of immature fruit.
- Marketable packout was about 81% for machine and about 94 % for hand harvested fruit.
- Apart from packout, significant losses occurred from fruit dropped on the ground by the harvester.
- Mechanically harvesting resulted in a high incidence of soft berries after storage.

Would a single-trunk blueberry "tree" increase harvest efficiency?

V. arboreum - Sparkleberry

- Native to the southeastern U.S.
- Shrub or small tree: 6 to 30 feet high
- Deep root system drought tolerant
- Tolerates soil pH up to 6.5
- Tree-like growth habit single trunk
- Sand or sand-clay soils
- Low organic matter
- Low Fe and NH₄

UF FI OR IDA

cas.vanderbilt.edu

Objectives

• Use sparkleberry as a rootstock to:

1. Increase adaptability of SHB to nonamended soils.

2. Improve mechanical harvesting potential for SHB.

Grafted 'Meadowlark', 2013 - Citra, FL

'Meadowlark', 2013 – Archer, FL

Own-rooted

Hand-harvesting vs. simulated mechanical harvesting Straughn Farms, Archer - 2013

Simulated mechanical harvest

- Yield?
- Fruit quality?
- Pack out?
- Postharvest storage?

Total yield

	Total yield (g/plant)				
	Fartl	ning	Mead	lowlark	
	HH MH		HH	MH	
Treatment		201	3		
Own-rooted/amended	5192 aA	2572 aB	3323 aA	1601 aB	
Own-rooted/non-amended	1980 bA	1329 bA	1418 bA	889 bA	
Grafted/amended	2568 bA	1699 bB	1281 bA	913 abA	
Grafted/non-amended	2009 bA	1291 bB	1679 bA	880 bB	
	2014				
Own-rooted/amended	4943 aA	2257 aB	5036 aA	2384 aB	
Own-rooted/non-amended	1927 cA	1132 bB	1715 cA	914 bA	
Grafted/amended	4298 abA	2302 aB	2792 bcA	1904 aB	
Grafted/non-amended	3263 bA	1661 abB	3323 bA	1807 aB	

• HH plants generally yielded more than MH plants

From Casamali, et al.

Marketable berries and berry losses

	MY (%) ^z	GLBH (%)	GLDH (%)	PL (%)	BLP (%)
Treatment			Farthing		
Own-rooted/amended	53.1 b	18.0 a	9.5 a	15.9 ab	3.5 a
Own-rooted/non-amended	57.0 ab	18.9 a	8.9 a	13.9 b	1.3 b
Grafted/amended	57.7 ab	15.7 a	6.1 b	18.5 a	2.0 b
Grafted/non-amended	59.1 a	17.5 a	5.8 b	15.7 ab	1.7 b
			Meadowlark		
Own-rooted/amended	60.7 a	9.9 ab	11.2 a	14.0 a	4.2 a
Own-rooted/non-amended	64.5 a	7.7 b	10.1 a	12.9 a	4.8 a
Grafted/amended	62.7 a	12.9 a	6.9 b	13.5 a	3.8 a
Grafted/non-amended	64.6 a	10.2 ab	6.4 b	14.1 a	4.7 a
- \ /	6 41				

^z Values are percentages of the potential total yield for each treatment. MY= marketable yield; GLBH= ground losses before harvest; GLDH= ground losses during harvest; PL= packout losses; BLP= berries left on the plant after harvest.

MH had ~40% reduction in marketable berries compared to HH

From Casamali, et al.

Visual ratings and weight loss

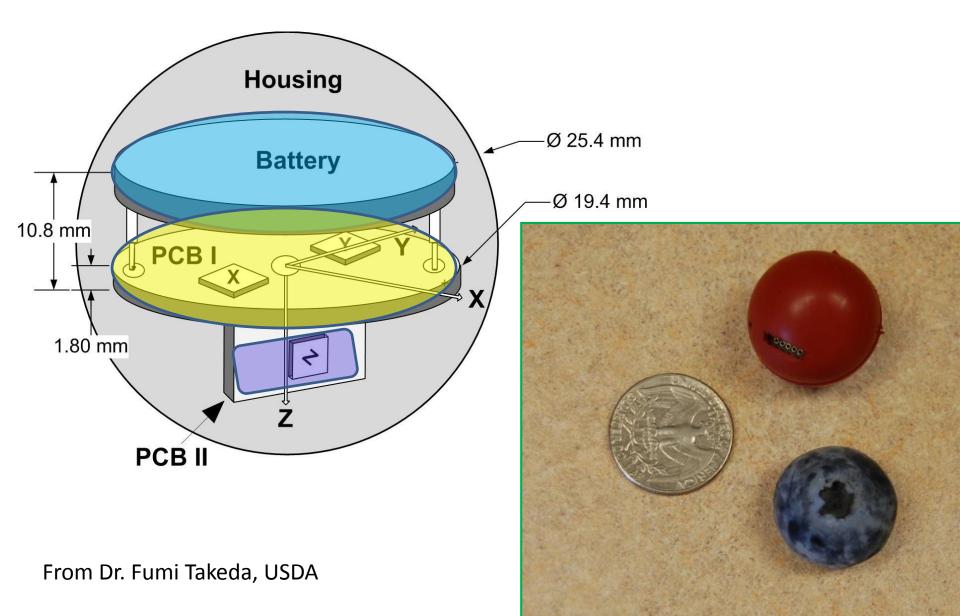
- For either harvest method, berries stored at 7 and 14 days had lower appearance rating, and higher percentage of soft and shriveled fruit
- After storage, MH berries had lower appearance rating, and higher percentage of soft and shriveled fruit than HH berries
- No decay was observed
- Weight loss increased during storage for either harvest method

From Casamali, et al.

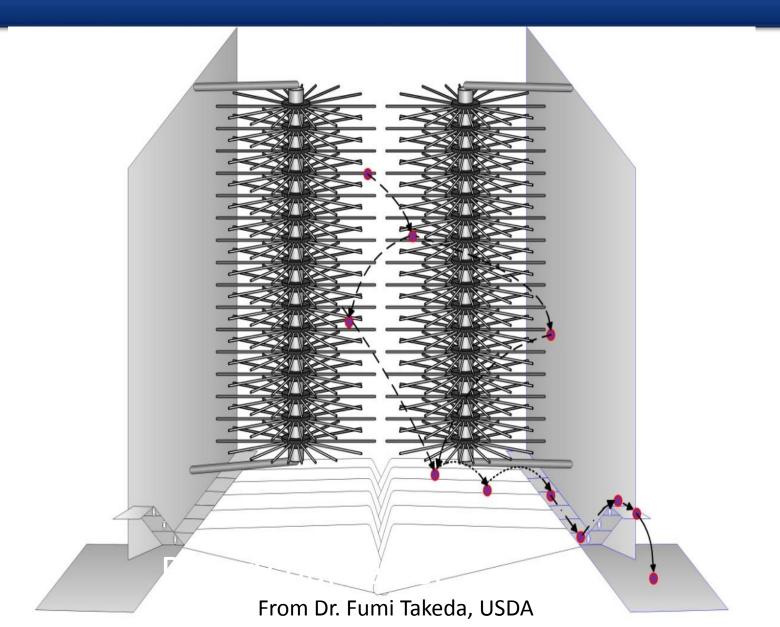
Fruit quality and firmness

- MH berries had lower TTA and greater TSS and TSS:TTA ratio than HH berries
- HH berries had greater berry firmness than MH
- HH berries did not have a reduction in firmness during storage; however, firmness of MH reduced after 14 days in storage

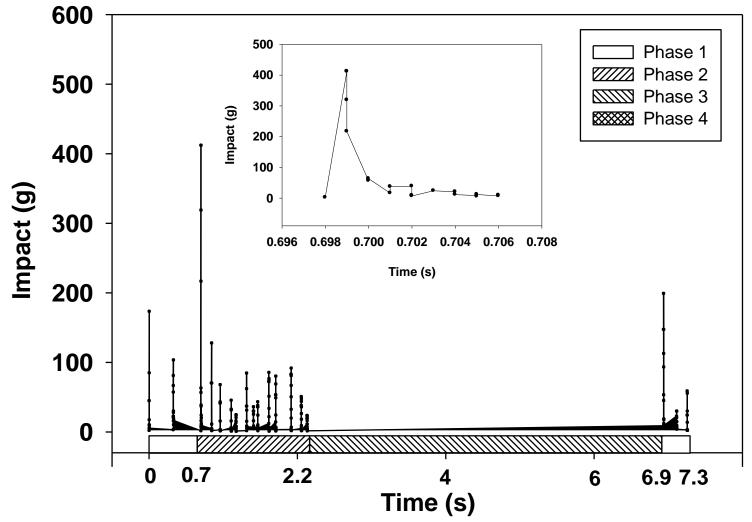
Fruit Quality and Yield Loss


Example of bruising from mechanical harvest

Internal Bruise


ΜH

Hand Harvest


BIRD Sensor: Assembly

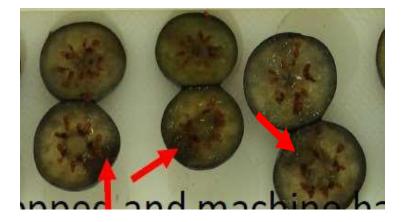
Mechanical Harvest Process

Real Time Impacts

O-T-R Mechanical Harvesting

Advantages:

High capacity harvesting Need fewer workers Less cost per harvested fruit


Disadvantages:

More greens and reds More bruised fruit

More soft fruit Less packout Shorter shelf-life More postharvest decay Not acceptable for long, trans-oceanic transport

Expensive (US \$140K to \$240K)

From Dr. Fumi Takeda, USDA

Bruising


Can a less expensive mechanical harvesting aid be developed with reduced fruit damage?

BEI McKibben's Walk-A-Long "stand-and-pick" machine and H1 berry stripper from >50 years ago

Photos – Bernie Newton

From Dr. Fumi Takeda, USDA

Rethinking for the future

Current semi-mechanical harvesting (harvest-assist) machines

A. BBC Push-pull or tractor-pulled

(walk along, \$6 ~ 11K)

B: GH Machine self-propelled

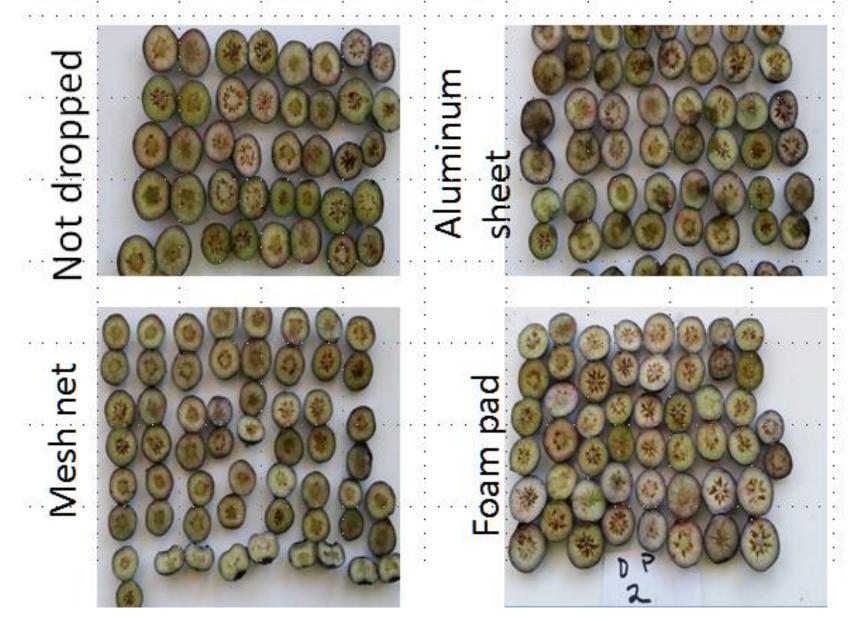
(riding platform, \$45 ~ 60K)

- Platform is stationary while harvesting blueberries
- Fruit catching apparatus is <u>manually</u> operated
- Do not have powered fruit conveyance system
- Harvested fruit lands on metal surface

SPRING 2016: CENTRAL FLORIDA FIELD TESTS WITH MOBILE CATCH FRAME

DR. FUMI TAKEDA SHOWING SUSPENDED SHAKER CONCEPT

INITIAL TESTS FOR SURFACE OF MOBILE CATCH FRAME


Fruit 'Flicker', 'Kestrel', 'Springhigh') dropped from 1, 2 or 3 feet onto:

- Bare metal
- Foam pad
- Suspended poly net

Held overnight at room temp

'Draper' fruit dropped 3 feet, sliced after 12 hours

Conclusions

- Research is ongoing to increase machine harvest efficiency, reduce fruit injury, and develop less expensive berry harvesters for small to medium-sized berry farms.
- Breeders are selecting for desirable horticultural traits.
- Researchers are testing harvest assist platforms that are less expensive than over-the-row harvesters.
- Various shaking devices and catch frame surfaces are being evaluated.
- Fruit bruising, storage quality, and detachment of immature fruit during harvest are major challenges.

