Smart Irrigation Practices to Promote Plant Defense Against Diseases

Kati Migliaccio, PhD PE Associate Professor Agricultural & Biological Engineering Tropical REC Homestead klwhite@ufl.edu @UFTRECwater

Water stress and plant disease

- Too much water or flooding
 - Anoxic conditions
 - Disease spread(*Phytophthora*)
- Too little water
 - Greater susceptibility to disease
 - Insects view as a 'good target'

Role of irrigation

- Add water to plants to prevent water stress
- Right amount, right time, right place
- Too much irrigation can create new problem

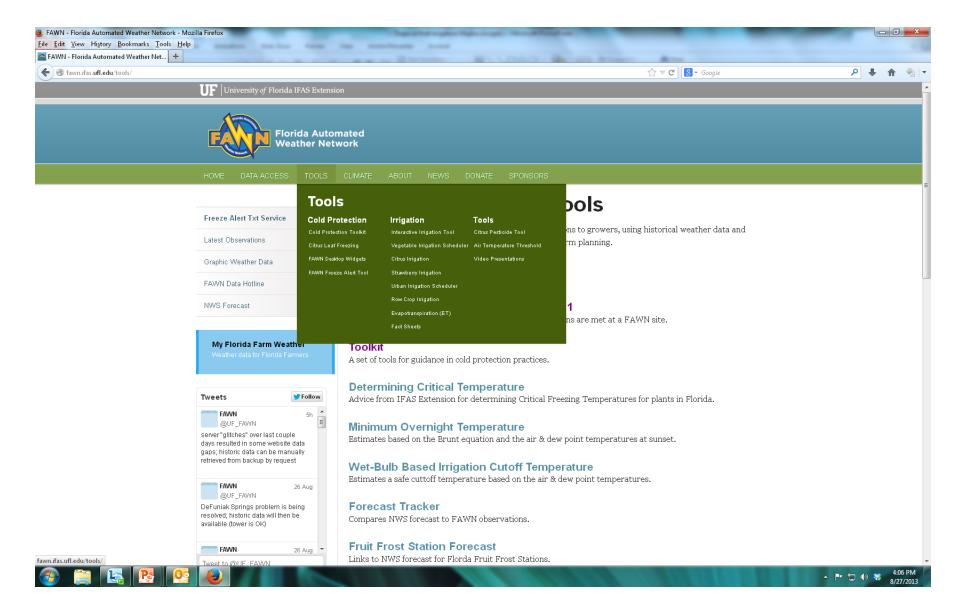
Components of good irrigation

- Equipment has been maintained and is regularly checked for leaks, breaks, problems
- The right system is being used (drip, micro sprinkler, lateral, etc.)
- A smart irrigation schedule is applied

Smart irrigation schedules

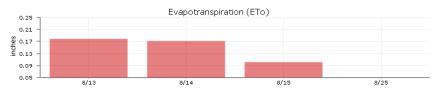
- "Do it myself" scheduling
- Site specific smart hardware scheduling
- Web and app scheduling tools

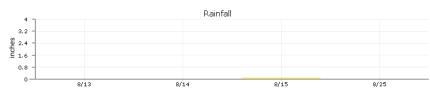
Michael Gutierrez photo


Do it myself style

FAWN

- Florida Automated Weather Network
- Free resource with valuable information
- Rainfall and evapotranspiration
- http://fawn.ifas.ufl.edu/mffw/


FAWN: Irrigation using ET


🥑 FAWN - Florida Automated Weather Network - Mozilla Firefox		
Eile Edit View Higtory Bookmarks Tools Help		
AWN - Florida Automated Weather Net +	and demander demand	
🗲 🕲 fawn.ifas.ufl.edu/tools/et/graphic.php?locId=440	🏠 🔻 🤁 🔀 🗕 Google	۹ 🖡 🔍
\mathbf{UF} University of Florida IFAS Extension		
Florida Automated Weather Network		
HOME DATA ACCESS TOOLS CLIMATE ABOUT NEWS DONATE SPONSORS		
Tools » Irrization » ET		

Visual ET for Homestead

This is a visual view of the last 14 days of ET calculations at Homestead.

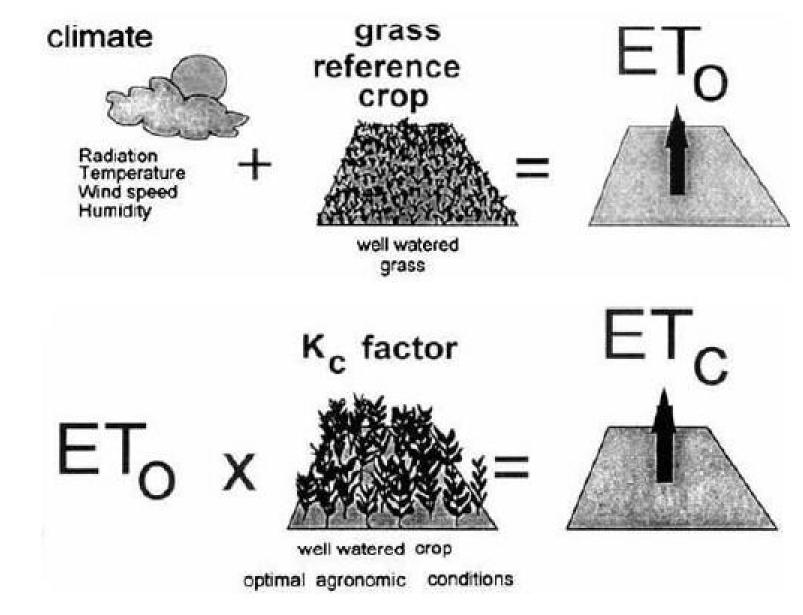
Jump to: Homestead 🗸 🗸

Home Database Climate Tools About DONATE © University of Florida-Gainesville, Florida 32611; 352-392-0429 Disability Services Privacy Policy

How to use FAWN ET for irrigation?

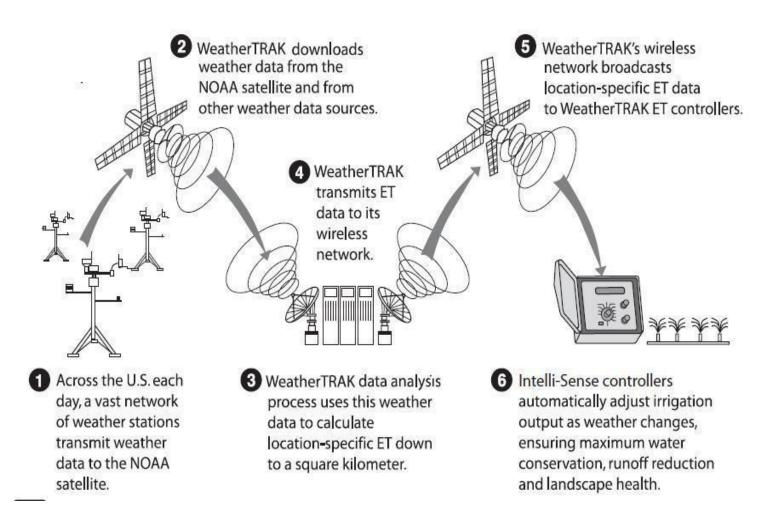
- 1. Take average of last few days (0.11 inches), multiple by crop coefficient (Kc) (0.9) ETc = 0.1 in/day
- 2. ETc is the amount of water needed per day, determine how many days you want to irrigate (3 days/wk)
- Total irrigation for the week (7*0.1 in) divided by the number of irrigation events gives you the amount per event (0.23 in)
- 4. Determine the deliver rate of your system (0.25 in/hr)
- Divide amount per event by rate (0.23/0.25*60min);
 56 minutes

Smart irrigation systems



ET Controllers

2 methods of determining irrigation:(1) Soil water balance (2) Relative to historic peak ET


http://moreprofitperdrop.wordpress.com/

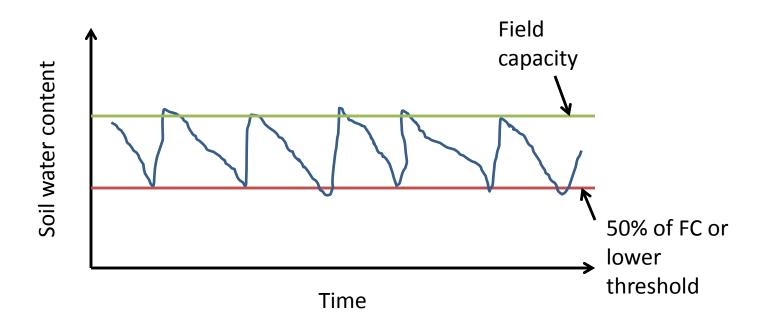
ET based smart irrigation system

- Signal based
 - Receive weather data from remote source on daily basis to update irrigation schedule (measurement and control)
 - Annual fee for data, more real-time data used in ET estimation
- On-site weather based or stand-alone
 - Uses an on-site sensor to estimate ET and update irrigation schedule (measurement and control)
 - No annual fee for data, less real-time ET data used in ET estimation

ET system schematic

http://www.cisolar.com/catIrrigator2.html

Soil water based smart irrigation system


- Use some type of soil water sensor (SWS) or soil moisture sensor (SMS) to allow or bypass irrigation events (measurement and control)
- Sensor acts as a switch
- Different types exists but generally use a sensor with TDT technology

Thresholds

• Set to a 'lower threshold' or lower soil water content at which irrigation is needed

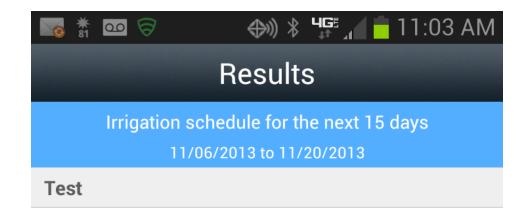
Not convinced?

- Try out the virtual tool on FAWN
- Compare different irrigation technologies and see water savings in a virtual environment
- Weblink: http://irrigationtool.appspot.com
- MANY resources on this most are linked in the tool above or are found on Dr. Duke's website

Web tools / apps

App examples

- Currently develop a suite of irrigation apps
- Citrus, strawberry, and turf have been released
- Coming soon: cotton, avocado, tomato, cabbage, peanut
- Use real-time weather data from FAWN

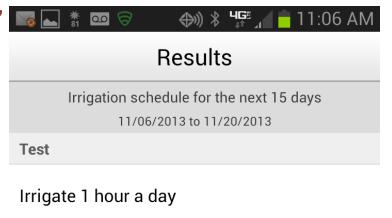

Citrus app

- Irrigation system: micro sprinkler
 - Tree row distances, emitter characteristics, soil type, irrigation depth, trigger depth
- Irrigation delays for rainfall amounts (days)
- Irrigation schedule (minutes) every so many days
- User can select the day of week to receive irrigation notifications

Citrus screenshot

Every 5 days irrigate 4 hours and 10 minutes

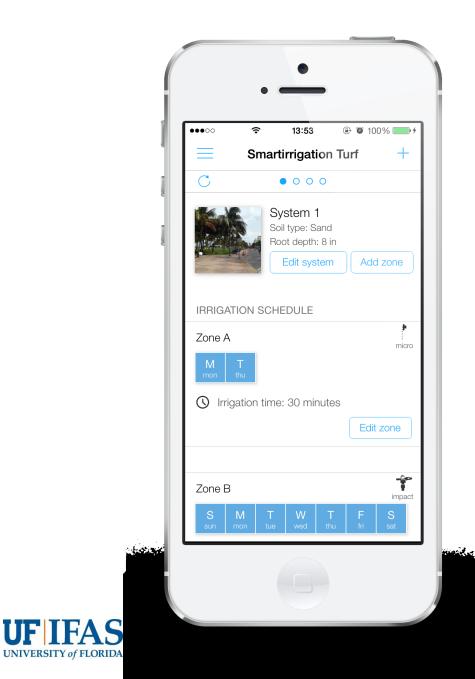
Irrigation delay for when it rains					
Rain amount	amount Irrigation delay				
1/4"	1 day				
1/4" to 1/2"	3 days				
1/2" to 3/4"	5 days				
3/4" to 1"	5 days				
> 1"	5 days				



Strawberry app

• Irrigation system: drip

- Between-row, planting date, harvest date, irrigation rate, efficiency
- Irrigation schedule (minutes/hrs) and degree days accumulated for everyday irrigation



Accumulated degree days: 2619

Urban turf app

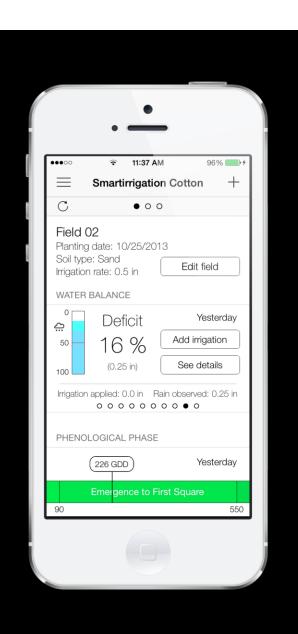
- Irrigation system: sprinkler heads
 - Soil type, root depth
 - Micro sprinkler, spray, multi-stream spray, gear driven rotors, impacts
 - Days of week to irrigate
- Irrigation schedule in minutes considering number of irrigation events per week
- Notifications used to adjust irrigation schedules due to rainfall

•••••	
•••00 7	
\equiv	Notifications
YESTERDAY	
	System 11
	Oystern TT
Zone A	on time to 40 minutes.
Change ingati	on time to 40 minutes.
MONDAY	
	System 11
Zone A	
There is over 6	0% chance of rain for Zone A area in th
08/23/2013	
00,20,2010	
	System 1
Zone B	
A rain event oc	curred in System 1 area. Please check
00/00/0010	
08/22/2013	
	MLa

dist.

Cotton app

- Irrigation application rate
- Plant phenology and crop coefficient (Kc) change with accumulated heat units (GDDs)


- User can override GDD-driven phenology

- Does not recommend irrigation amounts
 - Advises user of available soil water and stress threshold

Cotton app

- Uses real-time rain data from FAWN and GAEMN
- A daily water balance approach: allow for R to be changed and I to be input

Forecast data

- National Weather Service data: temperature, relative humidity, wind speed, probability of rain
- Current conditions
- Forecast by hour for next 11 hrs
- Forecast by day for next 5 days

		0 🗃	Â		**	*	2	2:24
		F	-ore	ecas	st			₽
			Syst	em 1				
Current conditions								
91°F J Partly Cloudy								
9	1	Ή					9% / np/h c	
								-
Next I	nours	5						
() SPM	4PM	5PM	6PM	7PM	7PM	9PM	10PM	11P
92°F	91°F	90°F	88°F	85°F	85°F	80°F	78°F	77°
10%	10%	10%	10%	10%	10%	10%	10%	109
Next	days							
Π	1		<u> </u>	2	D	Ð	_	l)
day	°F		°F	rh 9	%	%	m	p/h
Fri	91		72	73		60	6	.2
*	Ĵ			\Box		Ē	יב	

Summary

- There are a variety of resources, pick the one (or more) that works best for you
- FAWN good for the manual irrigation system operator that likes to be in the 'know' and have a say in the decision; works for all crops
- Field tools good for those that want exact information at their field and/or want automation; works for all crops
- App tool great for automatic irrigation systems and manual systems, does the math for you; limited on crop

AgroClimate Disease tools

