

Status of Plant Pathogenic Nematode Management in Southeastern USA

» Don W. Dickson

» Entomology and Nematology Department» Gainesville, FL 32611

Nematology Management 2014

- How different is nematode management programs today compared with 50 years ago?
- Negatives --
- We have loss many of the best chemical nematicides.
- There has not been much new chemistry added.

Nematology Management 2014

- How different is nematode management programs today compared with 50 years ago?
- Positives --
- Precision ag has fine-tuned chemical application, applicable for a few agric. sites.
- There are probably more nematode resistance genes employed overall.
- We have a better handle on nematode species and their id.
- Beyond that, how different are the approaches?

Management of Nematodes

<u>Physical</u>

- Heat
- Electrical
- Microwave
- Irradiation
- Flooding
- Osmotic
- Solarization

<u>Biological</u>

 Organisms – fungi, bacteria (currently man has little control)

<u>Resistance – breeding,</u> grafting, tolerance

<u>Legislative (quarantine)</u>

Prevention of spread

Avoidance 2/20/2014

<u>Cultural</u>

- Rotation & cover crop
- Manures
- Fallow-flooding
- Allelopathic plants
- Sanitation & clean planting stock
- Time of planting
- Trap and antagonistic crop
- Nutrition and general care of crop
- Destruction of crop residue

<u>Chemical</u>

- <u>Chemicals</u>
 - Fumigant
 - Non-fumigant
 - New chemistry

Application methods, equipment, and dosages

We are now entering the post-methyl bromide era.

2/20/2014

Cancellations/withdrawals of nematicides began mid-1970's

DBCP & EDB were superb nematicides, and Methyl bromide was a quality broad spectrum fumigant.

Nonfumigants

Organo-phosphates Fensulfothion Fenamiphos Demeton Diazinon

<u>Carbamates</u> Carbofuran Aldicarb

Nematicide Fumigants

D-D DBCP EDB

Multi-purpose

<u>Fumigants</u> Methyl bromide Idomethane Vorlex

Characteristics desired in nematicides-2014

Efficacy **Economical** Effective at low dosage Low mammalian toxicity **Environmentally friendly** Nonpersistant No microbial degradation No phytotoxicity Easy to apply – preplant, at plant, post plant Active against different types of nematodes Low or no leaching No odor issues No off-site issues

Nematodes are among the most abundant animals on earth.

Three basic types:

- Nonparasitic nematodes often referred to as free-living
- 2. Plant-parasitic nematodes
- 3. Animal-parasitic nematodes

Don't ever think that nematodes can not harm you!

Dog heartworm Dirofilaria immitis

Mosquito borne

Characteristics of Nematoda

Nema = Thread Tode = Like

- 1. Multicellular, non-segmented invertebrate animals
- 2. Bilaterally symmetrical (some radial symmetry)
- 3. Body cavity a pseudocoelom
- 4. Body wall a cuticle and hypodermis
- 5. Lumen of esophagus triradiate in cross section.
- 6. Excretory system lacks flame cells
- 7. Anus and male gonopore joined (cloaca)
- 8. No respiratory or circulatory systems.

Animal-parasitic nematode Plant-parasitic nematode B External Head or lip region view A. Felicitus hookeri B. Heterodera schachtii C. Dorylaim D. Epsilonema E. Chromadorid 30K 376X 30KU 15.7KH 500 09 Ε C D Marine nematodes Free-living nematode

Pratylenchus penetrans lesion nematode – General morphology

Transverse Section of Nematode through esophagus

Ventral hypodermal chord

Don Dickson UF Nematologist

From Jenkins and Taylor, 1967

2/20/2014

How do we identify plant-parasitic nematodes (ppn) -

- 1. Overview of size and shape of nematode
- 2. Esophagus region shape and size
- 3. Stylet shape and size all plant parasites have a stylet

Plant-parasitic nematodes are relative small requiring magnification to see them.

- First, they generally have to be extracted from soil, where most times they are found.
- Extraction from soil generally requires special equipment and know-how, and procedures are laborious.

Esophageal types (red & underlined indicate ppn)

Photo of Nematode Stylets

Cuticular Annulation

Photo of the cuticular annulation and lateral field of a root-knot nematode second-stage juvenile

Mode of reproduction

- Four sexual forms:
- Male
- Female
- Hermaphrodite
- Intersex

Nematode Reproduction — Three methods among PPN

- Cross fertilizing: ♂ and ♀ mate. Gametes produced in separate individuals. Copulation required. Most common mode of reproduction & common among ppn.
- Parthogenesis: Only ♀ gametes produced (reproduction in absence of ♂ gametes), also common among ppn.

Nematode reproduction con't

Hermaphoroditism – 3° and 3° gametes produced within same individual. Copulation not required, but may occur. Most common among free-living nematodes, but rare

Important Disease Causing Plant-Parasitic Nematodes (Agrios, 1997)

Longidorus – Needle nematode	
Dolichodorus – Awl nematode	The second se
Belonolaimus – Sting nematode	
Anguina – Seed gall nematode	Total of 24 genera
Xiphinema – Dagger nematode	S
Hoplolaimus – Lance nematode	elicotylenchus – Spiral nematode
Hemicycliophora – Sheath nematode	
Ditylenchus – Stem and bulb nema	Rotylenchulus – Reniform nematode
Aphelenchoides – Foliar nematode Tylenchulus – Citrus nematode	Criconema – ring nematode
Paratrichodorus – Stubby root nematode Radopholus – burrowing nema	
<u>Pratylenchus – Lesion</u> Globodera – Cyst nema <u>Meloido</u>	<u>gyne – Root-knot nematode</u>
Criconemella – Ring Paratylenchus - Pin Meloidodera –	Heterodera – Cyst nematode
0 250 500 750 1000 1250 1500 1750 200 Don Dickson UF Nematologist Scale = μ	00 2250

2/20/2014

Javanese root-knot nematode, causes severe galling on tomato roots.

2/20/2014

Root-knot nematode below ground damage on tomato roots. 2/20/2014 Don Dickson UF

Nematologist

Single mature Root-knot nematode female with single egg mass

2/20/2014

Root-knot Nematode Life Cycle

Life Cycle of a Plant-Parasitic Nematode

Typical of most plant-parasitic nematodes

Root-knot nematode Infective Juvenile showing esophagus glands

Root-Knot Nematodes in Florida

- Meloidogyne incognita *
- M. arenaria *
- M. javanica *
- M. enterolobii *!
- *M. floridensis* *!
- M. hapla *
- *M. partityla*

M. christiei M. cruciani M. graminis M. spartinae M. graminicola M. marylandi

- * Most important species in vegetable production.
- ! Currently only reported to occur in Florida.
- There are over 90 species of root-knot nematodes reported worldwide.

Don Dickson UF Nematologist

2/20/2014

Most Important Root-Knot Nematode species for Crop Production in Florida

- *Meloidogyne incognita* Southern rkn 4 host races
- *M. arenaria* Peanut rkn 2 host races
- *M. javanica* Javanese rkn 4 host races
- *M. enterolobii* Guava rkn
- *M. floridensis* Peach rkn

Meloidogyne enterolobii guava root-knot nematode

- Tested on root-knot nematode resistant varieties
 Tomato +
 - Pepper +
 - Soybean +
 - Sweet potato +
 - Peach -

Meloidogyne floridensis peach root-knot nematode

- Breaks resistance in peach rkn resistant rootstocks
 - Nemaguard
 - Guardian
 - Floraguard
 - Nemared
 - Okinawa

Variability among root-knot nematodes

• Within a species of root-knot nematodes there exist differences in pathogenic virulence.

• In other words all populations of root-knot nematodes do not act the same in the amount of disease they cause.

2/20/2014

2/20/2014

Don Dickson UF Nematologist

2/20/2014

Don Dickson UF Nematologist

Some major crops with nematode resistance

- Vegetables carrot, tomato, pepper, potato, sweet potato
- Agronomic tobacco, soybean, sugarbeet, cowpea, vetch, corn, peanut
- Fruit trees peach, citrus
- Resistance is to endoparasitic nematode (primarily cyst and rkn), not ectoparasitic nematodes
- Important nematode races come into play

Grafting

- Grafting may play an important role.
- Two examples includes tomato and gardenia.
- Research is ongoing with melons and other crops.

Bioengineering resistance

- Identified parasitism genes in root-knot and cyst nematodes.
- Parasitism genes make a nematode unique in that it has ability to be a plant parasite. It can infect and feed on crops.
- Technique = use RNA interference to silence parasitism genes.
- Idea is to genetically modify plants to produce double-stranded RNA, which knocks out nematode parasitism genes.

Root-knot Nematode Resistance in Tomato Will M*i*-gene hold with high soil temperatures in Florida?

2/20/2014

Tomato marketable yield Spring 2011

Cvs.	TRT	NT	Growth		Galling	
	lbs	lbs	rating		index	
			Trt	Nt	Trt	Nt
Bella	76 Aa	66 Aa	7.6	4.8	21 Aa	25 Aa
Rosa						
Amelia	68 Aa	57 Ab	6.6	5.6	0.2 Ab	0.2 Ab
Red	80 Aa	65 Aa	7.3	6.4	18 Aa	15 Aab
Bounty						
272072014		Don Dicks	on UF Nem;	atologist		

Chemicals used to manage nematodes on vegetables & other crops for the past 60+ years

Application of Nematicide with Hand-Injectors (Fumigun)

Don Dickson UF Nematologist

2/20/2014

Don Dickson UF Nematologist

No suitable fumigant or herbicide applied to manage purple and yellow nutsedges

Nontreated control, no broad spectrum fumigant used. Crabgrass can be overwhelming

Southern stem blight -- Sclerotium rolfsii No broad spectrum fumigant applied Fumigants available 2014

- 1. Telone II (1,3-D)
- 2. Telone C17 and C35 (1,3-D + chloropicrin)
- 3. Pic-Clor 60 (chloropicrin + 1,3-D)
- 4. Metam sodium and metam potasium
- 5. Chloropicrin
- 6. Dazomet
- 7. Paladin (DMDS)

Registered Fumigants -- 2010

Methyl bromide formulations - (no CUE's requested for 2014)

1,3-D – Mostly nematodes
1,3-D + chloropicrin (broad spectrum, little herbicide activity)
Chloropicrin formulations – (little or no control of PPN)
Pic Clor 60
Metam sodium and metam potassium – (poor control of RKN)
Dazomet – (single label on turfgrass)

Which are most useful for nematodes Mgt in vegetables

1,3-D, 1,3-D + chloropicrin formulations, Pic Clor 60

New product, labeled (broad spectrum or multi-purpose)

Dimethyl disulfide -- Paladin

Marketable Crop Yield

Don Dickson UF Nematologist

2/20/2014

Companies with new chemistry for nematode management in vegetables

Bayer DuPont Makhteshim-Agan (MANA) Now ADAMA Syngenta

DevGen (purchased by Syngenta, product discontinued effective February 2014) Divergence (purchased by Monsanto)

Carrot cv. Indiana Hybrid. 2010. A look at future!

Treatment	Number of	Total	Marketable	Marketable
	taproots	yield (lb)	yield (lb)	yield loss
	04/13	04/13	04/13	(%)
1 kg/ha	485 a	53.35 a	36.63 a	31.34
2 kg/ha	470 ab	60.17 a	41.36 a	31.26
3 kg/ha	406 cd	58.65 a	39.04 a	33.44
4 kg/ha	459 abc	57.02 a	38.41 a	32.64
Vydate 6.0 lb/ac	437 abc	59.89 a	42.66 a	28.77
Temik 6.0 lb/ac	418 bcd	62.20 a	45.17 a	27.38
Nontreated	<mark>367 d</mark>	<mark>33.07 b</mark>	17.82 b	<mark>46.05</mark>

New nematicides

Different formulations (wettable powder, spray concentrate, seed treatments, etc., all requiring varying methods of application

Spray over surface, incorp. -- preplant, at-plant, post-plant

Drip application – preplant, at-plant, and post-plant & multi-applications

Seed treatment or seedling media treatment

Plant-hole drenches

Chemigation

Yetter coulter fumigant applicator

2/20/2014

Don Dickson UF Nematologist

Nematode suppressive organisms

- Fungal agents
 - Pochonia chlamosporium (dev. as product)
 - Nematophthora gynophilia
 - Paecilomyces lilacinus (product available)
 - Hirsutella rhossiliensis and other spp.
 - Arkansas fungus 18
 - *Catenaria* spp.
 - Many nematode trapping fungi

Pasteuria penetrans – Bacterial parasite

Endospores of *P. penetrans* attached to J2 of *Meloidogyne*

Anterior region

Lateral field

2/20/2014

Z. Chen et al., Phytopathol., 87: 273-283.

In Summary

1. MI-1 gene not broken by soil temperatures, resistant tomato cvs. with low galling percentages, but yields vary from season to season.

- 2. Multi-purpose fumigants remain useful, with dimethyl disulfide offering promise.
- 3. New chemistry promising but must be coupled with other materials to ensure weed and soilborne fungal management.

Thank you

