Fertilizer Management for Plant Health and Environmental Water Quality Protection

Florida and California are different ...

... but we share some problems, and solutions

Nitrogen and phosphorus management for horticultural crop production can be tricky :

- Effects on crop yield
- Effects on product quality
- Effects on environmental water quality

N rate affects crop yield

Bottoms et al., HortScience 47:1768-1774, 2012

Does N rate affect postharvest quality ?

Seasonal N rates differing by > 100 lb/acre had no consistent effect on postharvest lettuce quality

Breschini and Hartz, HortScience 37:1061-1064, 2002

N and P rates impact environmental water quality

In surface water (N and P) :
cause species shifts, algae, hypoxia
In groundwater (NO₃-N) :
exceed drinking water standard
affect surface water (through springs)

What are the environmental nutrient concentration targets ?

 Federal drinking water standard is 10 PPM NO₃-N

 Environmental standards vary by area, can be as low at 1 - 2 PPM NO₃-N, and 0.06 PPM PO₄-P

Where are we now ?

In coastal California :

- groundwater often 10 30 PPM NO₃-N
- surface water is often
 - 20 40 PPM NO₃-N
 - 0.1 0.4 PPM PO₄-P

 Nutrient impairments are widespread in Florida

So what are regulators going to do?

In coastal California, new rules have been proposed :

- 'N balance ratio' of 1.0 (vegetables) or 1.2 (strawberry) ratio = fertilizer N applied vs. crop N uptake
- Intent is to move toward a ratio based on N removal from the field in harvested product

Nutrient loading to the environment

Basic principle :

Fertilizer N and P applied but not removed from the field in harvested products are at risk of *eventually* being lost to the environment

Nutrient loading to the environment

Basic principle :

- Fertilizer N and P applied but not removed from the field in harvested products are at risk of *eventually* being lost to the environment
- Therefore, water quality protection requires :
 - preventing excessive P buildup in soil
 - maintaining reasonable proportionality between N application and harvest removal

Fertilization practices have long-term consequences :

San Joaquin Valley - one crop per year, vegetables and row crops Salinas Valley - two crops per year, all vegetables

Soil P status directly affects the degree of environmental hazard :

In a simulated runoff study using 25 California vegetable soils :

Is P fertilization always necessary ?

P fertilizer trials in coastal lettuce :

15 lettuce fields chosen, representing the typical range of soil test P values for the Salinas Valley

P treatment comparison:

- grower's preplant P (averaged 80 lb P₂O₅/acre)
- no applied P

Is P fertilization always necessary ?

	Soil bicarbonate	Did P fertilization
Field	P test (PPM)	improve yield?
1	35	yes
2	40	yes
3	53	no
4	54	yes
5	55	no
6	57	no
7	57	no
8	62	no
9	62	no
0	72	no
11	78	no
12	81	no
13	82	no
14	98	no
15	124	no

How efficiently was the applied P taken up ?

Average of non-responsive fields:

	Ib P ₂ O ₅ / acre				
P treatment	P applied	Total crop P uptake	Removal with harvest		
Grower P	80	31	20		
No P	0	30	20		

P fertilization by 'recipe' wastes money, increases pollution potential :

2004-05 lettuce field survey

Nitrogen management : N balance gives clue to pollution potential

And Ant

IN AC

	lb N / acre				
	fertilization rate	crop uptake			
lettuce	180	140			
strawberry	190	190			
tomato	200	240			

Nitrogen management : N balance gives clue to pollution potential

A A

	lb N / acre			
	fertilization rate	crop uptake	removal with harvest	
lettuce	180	140	70	
strawberry	190	190	90	
tomato	200	240	140	

Fate of applied N not removed in harvested products :

Remain in organic form

Lost through denitrification

Remain as residual soil nitrate

Lost as nitrate in water

Steps to efficient N management :

- Be realistic in estimating crop N fertilizer requirements
- Understand crop N uptake pattern, and supply N 'just in time'
- Control irrigation efficiently
- Use monitoring tools appropriately
- remediate agricultural runoff or drainage

Be realistic in estimating crop N requirements :

Seasonal N fertilization of 40 commercial strawberry fields

Field

	Ave	Min	Max
Preplant	106	24	234
Fertigated	93	3	304
Total	200	118	424

In the real world, N application rate seldom drives yield :

Florida tomato :

2007:

- Higher yield
- Less N required

2008:

- Lower yield
- More N required

Florida tomato :

2007:

- Higher yield
- Less N required

Conclusion:

It takes at least 250 lb N/acre to ensure peak productivity

2008:

- Lower yield
- More N required

Florida tomato :

2007:

- Higher yield
- Less N required

Alternative conclusion:

 Field-specific factors govern N requirement, and N efficiency requires adjusting for those factors

2008:

- Lower yield
- More N required

'Insurance' fertilization is highly inefficient :

2009 lettuce trials :

- Identified 18 fields with high residual soil nitrate
- Skipped the first N sidedressing in a plot in the middle of the field
- Compared commercial yield and crop N uptake with grower's N regime

Sidedress skip plot

Averaged across fields :

lb /acre Total N **Total crop** Commercial applied N uptake harvest weight **Grower N** 134 37,300 139 **Reduced N** 61 37,400 132

Only 10% of the extra N applied was taken up by the crop

Understand crop N uptake pattern, and supply N 'just in time' :

Most vegetable crops have a similar N uptake pattern :

- Slow early N uptake
- Peak uptake of 3 6 lb N/acre/day

Nutrient uptake by strawberry :

N uptake averaged about 1 lb / acre / day from March through August

IFAS recommendations for drip fertigation reflect crop N uptake pattern :

Tomato

		Total	Dronlant V	Weeks after transplanting ^w				
Production system	Nutrient	(lbs/A)	(lbs/A)	1-2	3-4	5-11	11	13
Drip irrigation, raised beds, and polyethylene	Ν	200	0-70	1.5	2.0	2.5	2.0	1.5

Strawberry

Injected^x (Ibs/A/day)

InjoatadX (lbc/A/day)

				Growth period ^w			
Production system	Nutrient	Total (Ibs/A)	Preplant ^y (Ibs/A)	First 2 weeks	Sept. to Jan.	Feb. and Mar.	April
Drip irrigation,	Ν	150	0-40	0.3	0.6	0.75	0.6

Control irrigation efficiently because ...

N leaching losses can be substantial

Measuring N leaching

Suction lysimeter

Controlled vacuum held throughout an irrigation cycle

What is the typical NO₃-N concentration of water leaving fertilized root zones ?

10 - 30 PPM NO₃-N common = 2 - 7 lb N/acre \cdot inch

40 - 120 PPM NO₃-N common = 9 - 27 lb N / acre \cdot inch

Irrigation efficiency varies :

Seasonal drip irrigation applied in 25 strawberry fields

Use monitoring tools appropriately

 In-season soil NO₃-N testing is the most effective tool to prevent unnecessary fertilization in California vegetable production

Which is more useful, monitoring petiole NO₃-N or leaf total N ?

- Leaf total N shows overall crop N status
- Petiole NO₃-N thought to reflect recent N uptake, or soil N availability

Petiole NO₃-N has serious flaws :

not closely related to soil N availability

2004-05 survey of coastal lettuce fields, early heading stage

Petiole NO₃-N has serious flaws :

strongly influenced by environmental factors

Six sprinkler-irrigated broccoli and cauliflower fields, sampled every 2 days over an irrigation cycle :

California processing tomato N fertigation trials

Bottom line on petiole testing :

- as an agronomic practice, maintaining high petiole NO₃-N can ensure crop nitrogen sufficiency
- as a BMP practice, maintaining high petiole NO₃-N will often lead to unnecessary N fertilization, which increases N pollution potential

Can water be treated to remove NO₃-N ?

- Biological denitrification is promising
 - wetlands
 - denitrification bioreactors

Wood chip bioreactors :

 3 pilot-scale wood chip reactors are running in the Salinas Valley, treating tile drain effluent and surface runoff

 In coastal California conditions, annual denitrification potential is ≈ 3 lb N/yd³ of bioreactor volume; in warmer Florida conditions the potential may be even greater

Can water quality and horticultural production coexist?

It will not be easy, but progress toward improved water quality can be made while maintaining crop productivity