

Composted Dairy Manure as a Component of Potting Media for Greenhouse Crop Production

Jianjun Chen

Mid-Florida Research and Education Center Apopka, FL 32703

What Are Potting Media?

Potting media: substrates formulated by mixing organic materials with other ingredients in different proportions used for growing nursery and greenhouse crops

Organic Materials		Other Ingredients	
Composted materials		Dolomite	\checkmark
Coconut coir dust		Fertilizers	
Peat moss	\checkmark	Foam beads	
Pine bark	\checkmark	Perlite	\checkmark
Rice hulls		Sand	
Wood residues		Soil	
		Vermiculite	\checkmark

UF FLORIDA Commercial Media Formulations

IFAS Extension

Ratio by Volume	Components
1:1	Peat: Pine bark
1:1	Peat: Perlite
2:1:1	Peat: Perlite: Vermiculite
2:1:1	Peat: Pine bark: Sand
2:1:1	Peat: Pine bark: Perlite
3:1:1	Peat: Perlite: Vermiculite
3:1:1	Peat: Pine bark: Sand
6:3:1	Pine bark: Florida peat: Sand

- Composting dairy manure reduces nutrient pollution
- Florida is the second largest state consuming potting media
- Peat is a major component of potting media, peat mining has been restricted, and the price has been increasing
- Creating a win-win situation for both the greenhouse and the dairy industries

UFAS Extension

How Dairy Manure is Composted

Physical Properties of Composted Dairy Manure

Component	Bulk density	Total porosity	Air space	Water holding capacity	EC	рН	CEC
	(g/cm³)	(%)	(%)	(%)	(dS/m)		(cmol/kg)
Canadian peat	0.16	74.6	10.5	64.1	0.32	3.9	35.89
Cowpeat	0.26	74.3	23.1	51.2	4.64	6.9	27.31
Florida peat	0.39	61.7	17.4	44.3	0.31	6.9	16.24

Chemical Properties of Composted Dairy Manure

Component	C/N ratio	С	Ν	Ρ	К	Са	Mg	S
					(%)			
Canadian peat	56.82	46.60	0.82	0.03	0.05	0.24	0.16	0.15
Cowpeat	15.06	25.00	1.66	0.59	0.57	1.21	0.33	0.73
Florida peat	18.26	29.40	1.61	0.03	0.02	0.73	0.06	0.17
Component	E	B Cu	Fe	;	Mn	Мо	Zn	Na
				(mg	g/kg)			
Canadian peat	n.d	. 2.3	1375.0)	66.8	n.d.	17.7	212.0
Cowpeat	17.3	3 36.2	14338.0)	105.0	1.6	188.0	2058.0
Florida peat	n.d	. 5.4	1300.()	13.2	n.d.	5.4	133.0

- How to use the composted dairy manure to formulate potting media?
- Will the formulated media have an increased amount of N and P leaching?
- Will the high concentration of Fe and Na cause phytotoxicity to plants?

Potting Media Components

(1) Canadian peat (Fafard, Inc.)
(3) Florida peat (Reliable Peat, Co.)
(5) Perlite (Fafard, Inc.)

(2) Cowpeat (Agrigy)(4) Vermiculite (Fafard, Inc.)

Formulation of Potting Media

-Percentages of Components

IFAS Extension

Potting	Canadian peat	Florida peat	Cowpeat	Perlite	Vermiculite
media	(%)	(%)	(%)	(%)	(%)
1	60	0	0	20	20
2	50	0	10	20	20
3	40	0	20	20	20
4	30	0	30	20	20
5	20	0	40	20	20
6	10	0	50	20	20
7	0	0	60	20	20
8	0	60	0	20	20
9	0	50	10	20	20
10	0	40	20	20	20
11	0	30	30	20	20
12	0	20	40	20	20
13	0	10	50	20	20
14	20	20	20	20	20

Formulated 14 Media

Properties of the 14 Media - Summary

- The 14 media had both physical and chemical properties suitable for propagation and production of greenhouse crops
- Increased percentages of dairy manure resulted in increased concentrations of nutrients
- **Extractable N was lower in composted dairy manure-based media**
- Extractable P was moderate in composted dairy manure-based media
- Total and extractable heavy metals were extremely low; but Fe and Na concentrations were higher than peat-based media

Germination of Asparagus, Chlorophytum and Schefflera Seeds

UFAS Extension

Rooting of 'Golden Pothos'

Rooting of 'Weeping Fig'

Production of Dieffenbachia 'Star Bright'

Production of Epipremnum aureum 'Golden Pothos'

UNIVERSITY of FLORIDA Crop Propagation and Production FAS Extension

- Composted dairy manure can replace up to 60% of peat with few detrimental effects on seed germination, rooting of cuttings and plant growth
- With increased percentages of composted dairy manure, the amount of NO₃-N and PO₄-P leaching increased
- The safeguard for less NO₃-N and PO₄-P leaching is to replace Canadian peat or Florida peat with composted dairy manure up to 20% by volume

Any Room for Improvement?

Is there any way of reducing N and P leaching?

Plant production with reduced fertilizer application

UNIVERSITY of FLORIDA IFAS Extension Shoot Dry Weight (g/pot) at the End of 'Star Bright' Production

	Fertilizer rate (g/pot)				
Media	0	1	2.5	5	
C1 (Control)	5.7	7.1	9.0	10.0	
C2 (10%)	10.7	10.8	11.2	10.7	
C3 (20%)	11.8	11.3	10.5	10.8	
C4 (30%)	12.9 a	12.1	10.2	9.9	
C5 (40%)	10.6	9.4	8.5	7.4	
C6 (50%)	9.3	8.9	7.8	7.2	
C7 (60%)	8.3	7.5	7.1	6.7	

Total Amount of NO₃-N Leached (mg/pot) during 'Star Bright' Production

_	Fertilizer rate (g/pot)					
Media	0	1	2.5	5		
C1 (Control)	0	6	20	108		
C2 (10%)	5	9	29	128		
C3 (20%)	68	94	146	211		
C4 (30%)	122	202	234	355		
C5 (40%)	239	297	363	421		
C6 (50%)	261	311	441	467		
C7 (60%)	354	356	454	523		

Total Amount of PO₄-P Leached (mg/pot) during 'Star Bright' Production

	Fertilizer rate (g/pot)					
Media	0	1	2.5	5		
C1 (Control)	2	6	18	38		
C2 (10%)	6	14	20	40		
C3 (20%)	27	28	33	55		
C4 (30%)	43	58	68	76		
C5 (40%)	59	69	101	97		
C6 (50%)	69	71	105	103		
C7 (60%)	85	93	100	114		

Reduced Fertilizer Application - Summary

- High quality 'Star Bright' plants were produced from composted dairy manure-based media without the addition of fertilizers
- Potting media with composted dairy manure at a volume from 10 to 30% produced 'Star Bright' with the greatest growth indices, the highest dry matter (shoot and root) accumulation, and the highest overall quality grading (4.0-4.5) without chemical fertilizer application
- The amounts of NO₃-N and PO₄-P leaching from media with composted dairy manure at 10 to 30% replacement of peat were equal to or much less than those of the control media fertilized with the commercial standard rate

The safeguard for better plant growth and less NO_3 -N and PO_4 -P leaching is to:

 replace Canadian peat or Florida peat with composted dairy manure at 20% by volume with standard fertilizer application

or

 replace Canadian peat or Florida peat with composted dairy manure at 30% by volume with reduced fertilizer application

UNIVERSITY of FLORIDA Economic/Environmental Impacts

- * No need for dolomite to neutralize pH, a saving of \$200/acre/year
- ✤ A 30% substitution by volume reduces peat use by 50% or a reduction of peat use by 240 cubic yard/acre/year, a saving of \$3,000-4,000/acre/year
- Potting media containing 10-30% composted dairy manure require no or reduced fertilizer application, a saving of \$2,000 to \$4,500 per acre/year

Total saving \$5,200 to 8,700/acre/year

- Plants produced from 10-30% composted dairy manure-based media are larger and reach marketable size at least 15 days earlier than peat-based media produced with chemical fertilizers, which reduces labor cost and water use
- Composting dairy manures significantly reduces the environmental problems and converts the manures into useful organic materials and potential income to dairy producers