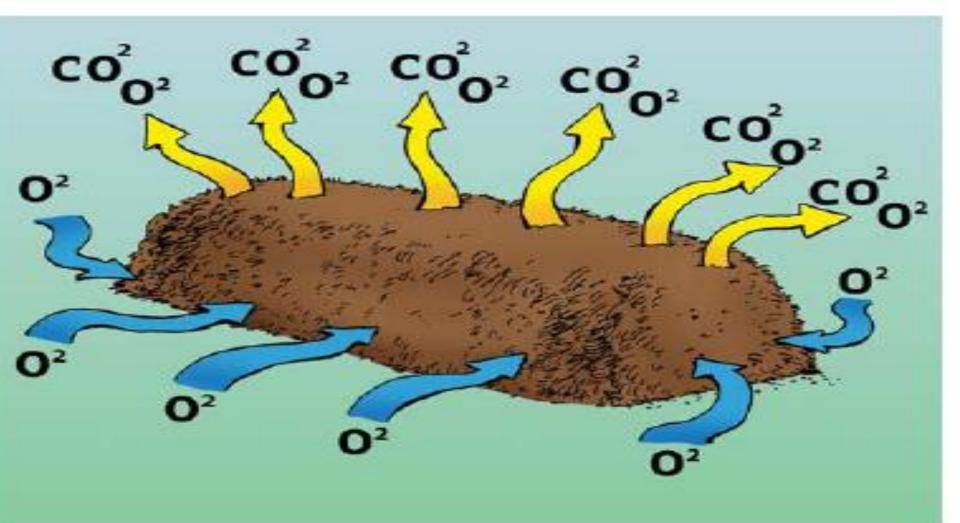
Using Compost and Animal Manure as a Florida BMP on Vegetable Production

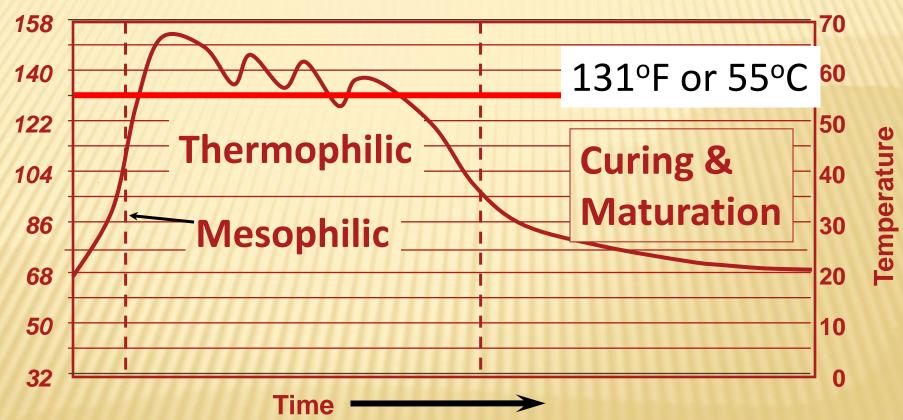
Monica Ozores-Hampton, Ph.D.



WHAT IS COMPOSTING?

'it's a biological decomposition process where microorganisms convert raw organic materials into relatively stable humus-like materials'

Copyright 2010 by Monica Ozores-Hampton. All rights reserved



Copyright 2010 by Monica Ozores-Hampton. All rights reserved

Copyright 2010 by Monica Ozores-Hampton. All rights reserved

Matter.

Under USEPA regulation 40 CFR Part 503 windrow composiing

Temperatures of 131 °F or 55°C for the first 15 days and turned 5 times will eliminate human and plant pathogen and kill weed seeds

THERMOPHILIC STAGE

×Usually 130-150°F ×Heat should be controlled

Copyright 2010 by Monica Ozores-Hampton. All rights reserved

Temperature: Thermometer \$140 3 feet long REOTEMP <u>www.reotemp.com</u>

pH meter and EC: http://www.specmeters.com/pH_Meters/index.html

Compost Analysis \$150 CONTROL LABORATORIES <u>http://www.controllabs.com/compost.htm</u>

Manure Collection

Copyright 2010 by Monica Ozores-Hampton. All rights reserved

FERTILIZER VS. COMPOST OR MANURE A fertilizer is applied specifically to provide known nutrients to a plant. **Compost or manure is applied to improve or** enhance soil characteristics for plant growth, but also may contain required plant nutrients.

FERTILITY PROGRAM: INORGANIC VS. ORGANIC SOURCES

× Inorganic nutrients:

Majority derived from synthetic chemical compounds. Mainly content the N-P-K and micronutrients that are essential for the plant growth.

- Easily dissolving in water, fast nutrient release rate, high analysis, low cost per unit of N.
- Leaching, require energy for manufacturing.

× Organic nutrients:

Derived from animal or vegetable matters. Many of the nutrients present in organic soil amendments must be transformed by soil microorganisms before they can be utilized by crops.

 Increase soil OM, increased water holding capacity and CEC, recycle nutrients.
High cost per unit of N, low analysis and low nutrient release rate (affected by environment), high application rate.¹⁶

COMPOST OR MANURE SHOULD BE APPLIED TO VEGETABLES BECAUSE:

- Vegetables root zone soil OM concentration usually only 0.5 to 1.5%.
- Availability of non-hazardous organic waste materials is increasing.
- Using organics as nutrient sources can be economically favorable.
- Benefits such increasing soil quality.
- Applying plant nutrients in an organic form may be considered a BMP.

DEVELOPMENT OF NUTRIENT MANAGEMENT PLAN
X We can combined the use of organic and inorganic nutrient sources.

* The goal: increase crop yield, reduce leaching, improve plant nutrient use efficiency and reduce environmental impact.

COMPOST AS AN ORGANIC AMENDMENTS

× Compost

Advantages: soil physical/chemical/biological property \uparrow , recycle nutrients, leaching \downarrow . Disadvantages: cost, availability, spreading equipment, compost quality.

Versus

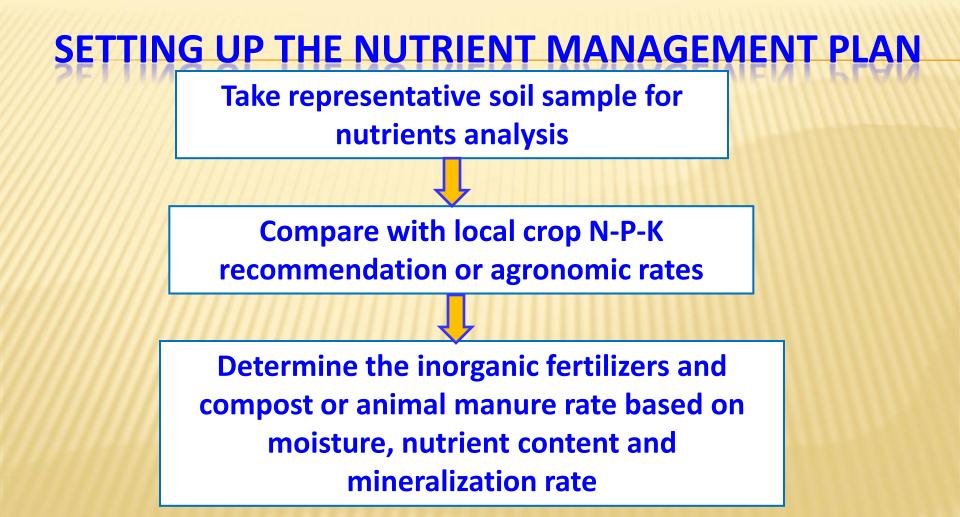
x Raw animal manure

Advantages: Soil physical/chemical/biological property 个, recycle nutrients. Disadvantages: food safety, availability, odors

COMPOST

11 they

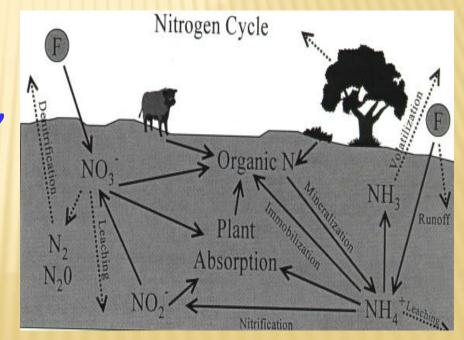
Sources	N	Р	K	Rate of N Release	
Las Anna Mercinitar	Jan		-(%)		
Poultry	1.3-5	3.0	2.0	23	
Mushrooms	2.5	1.3	0.9	10	
Horse	0.5	0.2	0.4	10	
Yard waste	1.0-1.2	0.2-0.3	0.2-1.4	6.0-10	
Dairy	1.2-1.5	0.3	0.9	15	
Gin trash	1.2-3.8	0.2	1.2	10	
Feedlot	1.9-2.2	0.3	0.8	10	


MANURE

Sources				Rate of N Release		
		(%)				
Poultry litter pellets	4.0	2.0	2.0	21		
Beef (no bedding)	0.6 - 0.7	0.35-0.45	0.5-0.65	35		
Dairy (no bedding)	0.5	0.15-0.3	0.3-0.45	35		
Dairy (with bedding)	0.45	0.2	0.6	25		
Poultry broiler house litter	3.6	3.9	2.3	45		
Poultry stock piled litter	1.8	4	1.7	45		
Poultry layer-under cage	1.3	1.6	1	50		
Swine (fresh)	0.6	0.5	0.3-0.5	50		
Swine (with bedding)	0.6	0.3	0.5	25		
Horse (fresh)	0.6	0.3	0.6	20		
Rabbit (fresh)	1.2	1.2	0.7	20		
Sheep (fresh)	1.1	0.5	1.0	25		
Sheep with bedding	0.9	0.4	1.0	20		
Goat fresh	1.1	0.6	0.9	25		

NUTRIENT APPLICATION CONSIDERATIONS

To prevent groundwater contamination by nitrate, compost, animal manures and inorganic fertilizer should be applied at a rate that is equal to or less than the agronomic N-P-K rate for the site.



N-Mineralization

Forms of N compost: Organic N > 90% and mineral N (NH_4 -N, NO_3 -N) < 10%

- Critical in determining N application rate.
- Depends on material type, soil, and environmental conditions.
- Decomposition occurs in phases (first-order kinetics). Rapid and slow.

WHAT IS A CROP NUTRIENT BUDGET?

Balance of nutrient entering and leaving the field or area

Sources of Nutrients

×N fertilizer

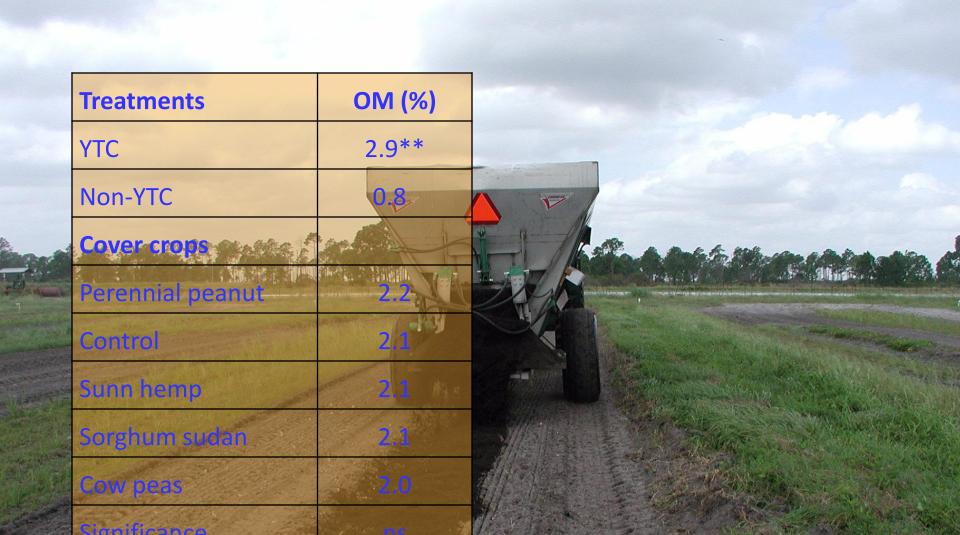
- ×N in irrigation water
- ×Residual soil N
- ×N from cover crops
- ×N from compost and animal manures
- Mineralization of soil OM

Losses of nutrients

- Crop removal
- Leaching
- Denitrification
- Volatilization

CROP NUTRIENT BUDGET

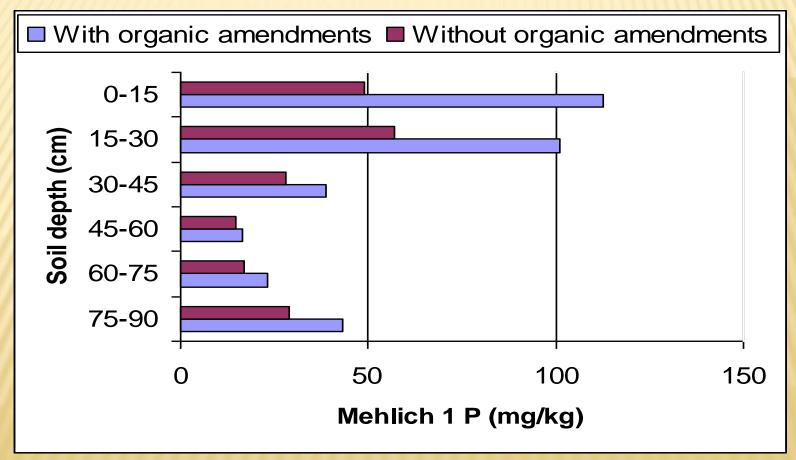
Reduce crop yield Reduce crop quality Deficiency Inefficient and expensive Nutrient run off Ground water pollution Pest/disease susceptibility Excess foliage Reduce vegetable quality


Copyright 2009 by Monica Ozores-Hampton. All rights reserved

Florida nutrient budgeting for tomato production. Tomato nutrient requirements based on 200 lb/acre of N; 100 lb/acre of P_2O_5 and 100 of K_2O lb/acre with a medium soil test levels of P and K (lb P x 2.29 = lb P_2O_5 and lb K x 1.2 = lb K_2O)

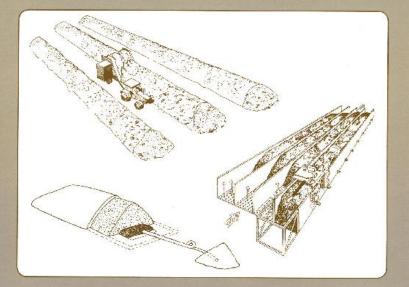
Material Inputs	Application rate (lb/acre dry weight)	N Rate (Ib/acre)	N Mineralization Rate (%)	Total (lb/acre NO ₃)	Total (lb/acre P ₂ O ₅)	Total (lb/acre K ₂ O)
Sorghum-sudangrass with 1.5% N, 0.2 % P & 2% K with 70% P and 80% K availability)	6,047	91	23	27	25	151
Poultry manure compost at 5 tons/acre (40% moisture and 3% N, 3% P & 2% K with 70% P and 80% K availability)	6,000	180	10	18	288	115
Sub-total	12,047	271	-	45	313	266
Fertilizer (ammonium nitrate 34% N)			-	155	0	0
Total		11 - 1		200	313	266

No Organic Amendment



Long Term Application of Organic Amendments 10 years

Phosphorous Accumulation in the Soil



CONCLUSIONS

- Compost and animal manures can improved soil physical, chemical and biological properties.
- N contribution can be low to medium, but P and K may be high to very high, so caution!!!
- Crop nutrient budget can be useful tool to account for nutrient inputs and outputs.

NRAES-54

On-Farm Composting Handbook

Natural Resource, Agriculture, and Engineering Service (NRAES) Cooperative Extension FIELD GUIDE TO ON-FARM COMPOSTING

NRAES-114