Bio-based Residues to improve the efficient use of water on Florida Sandy Soil

Letian Wang, George Cheng and Zhaohui Tong Agricultural and Biological Engineering Department, IFAS, University of Florida

Contents

- Florida Soil Conditions
- Soil Amendments
- Lignocellulosic Residues as the soil amendment
- Water holding capability- experimental procedure, results and conclusions
- Contact information

Soil

Soil is a natural body consisting of layers (soil horizons) of primarily mineral constituents of variable thicknesses.

O) Organic matter: Litter layer of plant residues in relatively un-decomposed form.

A) Surface soil: Layer of mineral soil with most organic matter accumulation and soil life.

B) Subsoil: This layer accumulates iron, clay, aluminum and organic compounds, a process referred to as illuviation.

C) Solid rock: Layer of large unbroken rocks. This layer may accumulate the more soluble compounds .

Source:

http://www.westone.wa.gov.au/toolbox6/hort6/html/resources/visitor_centre/fact_sheets/sc2.htm

(Source: PhysicalGeography.net)

Florida Soil Conditions

Source:

http://soils.ifas.ufl.edu/faculty/grunwald/research/projects/NRC_2001/NRC.sht ml

http://www.fnps.org/pages/plants/soil.php

Florida Soil Conditions

- High sand content: more than 50% of sand
- Large air pockets or gaps, which results in quick water drains
- High nutrient lost
- Frequently watering
- Sometimes high salinity (near ocean or well)

Need soil amendment for the efficient use of water and fertilizer

Soil Amendment with high water holding capacity

Low Water Holding Capacity Critically Restricting Seed Germination And Plant Development

Excessive Drainage Poor Water & Fertilizer Use Efficiency

Current Soil Amendments

- High absorbance Polyacrylamide (PAM) and its copolymers
 - From natural gas: non-bio-based
 - Price \$8/kg
 - Low salt tolerance (ionic)
 - Non-biodegradable
 - Toxic unreacted residues (AMD)
- Bio-based soil amendment
 - Starch-based
 - Chitason-based
 - Cellulose based
 - Carboxymethylcelluloses (CMC)
 - Lignocellulosic residues

Why lignocellulosic Residues?

Motivations

- Bio-based next generation biomaterials
- Low cost –Residues from biofuel process and paper mill
- 100% biodegradable and No toxic to soil
- **Objectives:** Evaluate the function of Bio-based Residues as a soil amendment to improve water holding capability and fertilizer efficiency of Florida sandy soils

Materials

- Florida Top Sandy Soil
- Fermented sugarcane bagasse residue from UF biofuel plant (FB)
- Paper Mill Brown Residue from Pine Tree (BM)

Materials	Lignin	Cellulose	Hemicellulos
			e
Fermented Bagasse	71.26%	22.30%	6.44%
Brown Mill Residue	0.35%	88.47%	11.18%

Bioethanol Production Process

- Primary Process: Convert cellulose and hemicellulose to ethanol
- Residues: Lignin plus residue fibers

Buckeye Technologies

- Buckeye Technologies is a global specialty cellulose business operating in a \$7 billion market
- High purity cellulose-Chemical Cellulose, customized fibers, pluff pulp and non-woven materials
- Hemicellulose stream- combined into bioethanol process to produce ethanol
- Lignocellulosic Residues after screening- including 85% cellulose

Experimental Methods

- Measure Water Retention Value (WRV) and Moisture Content of fiber residues and Residue/soil mixture by using modified Tappi UM256 Method;
- Investigate the effects of varied factors including fiber type, size, dosage, and sonication duration on water holding capabilities;
- Investigate the effect of fiber residues on the fertilizer leaching-working on the data-future work

Experimental Methods

Water Retention Value (WRV): A material's ability to take up water.

Water Retention Value

$$WRV = \frac{W_{Water}}{W_{Sample}} \times 100\%$$

where W_{Water} is the weight of water in the sample after centrifugation, and W_{Sample} is the dry weight of the sample

Experimental Procedure

Effect of fiber size on the water retention value of fiber residues

Note: Both Fermented Bagasse Residue and Paper Mill Residue were milled and sieved to three size classes

Results – Fiber / Soil Mixture

Effect of fiber size on the water retention value of 1% fiber/soil mixture

A: 0.5 - 0.297 mm B: 0.297 - 0.178 mm C: 0.178 - 0.089 mm

Effect of sonication on the water retention value of 1% fiber (C)/soil mixture

Results – Fiber / Soil Mixture

Effect of fiber dosage on the water retention value of fermentation residue (FB)/soil mixture

A: 0.5 - 0.297 mm B: 0.297 - 0.178 mm C: 0.178 - 0.089 mm

Effect of fiber dosage on the water retention value of brown paper mill residue (BM)/soil mixture

A: Soil Control, B: 1% A, C: 3% A, D: 1% B, E: 3% B, F: 1% C, G: 3% C, H: 1% C with 10 minutes sonication, I: 1% C with 30 minutes sonication

Conclusions

- Soil's WRV can be increased with the addition of fiber residues as much as <u>go % (</u> FB - 3% A)
- Adding only 1% of FB and BM improved WRV of soil by <u>40%</u> and <u>38%</u> respectively
- Smaller fiber size better WRV for FB residues and FB/Soil mixture for 1% fiber dosage
- 10 minutes sonication treatment improved WRV of soil by about 10% (1%, particle size distribution: 0.178 – 0.089 mm), whereas samples with 30 minutes of sonication showed 20% increase of WRV.

Questions?

Contact Information

Zhaohui Tong Assistant Professor Agricultural & Biological Engineering University of Florida PO Box 110570 Gainesville, FL 32611-0570

Tel: (352) 392-1864 ext. 103 E-mail: <u>ztong@ufl.edu</u>