IMPACTS OF MANAGEMENT ON SOIL MICROBES IN FLORIDA VEGETABLE PRODUCTION

Sarah Strauss, PhD
Assistant Professor, Soil Microbiology
strauss@ufl.edu
@SoilMicroSarah
Over 1 billion microbes in 1 gram of soil
Over 50,000 different “species” of bacteria
Why are soil microbes important?
Management practices can influence soil microbes

- Raised beds
- Fumigation
- Soil amendments
What happens to soil microbes in a raised bed?

Bacteria

- Richness
- Shannon

Fungi

- Shannon

![Box plots showing bacterial and fungal diversity across different depth intervals in raised beds.](image)
Management practices can influence soil microbes

- Raised beds
- Fumigation
- Soil amendments
Fumigant had significant impacts on soil bacteria

Class
- Acidobacteria
- Actinobacteria
- Alphaproteobacteria
- Bacilli
- Betaproteobacteria
- Chloroflexi
- Clostridia
- Deltaproteobacteria
- Gammaproteobacteria
- Gemmatimonadetes
- KD4-96
- Ktedonobacteria
- Nitrospirae
- Planctomycetae
- Solibacteria
- Sphingobacteria
- Subgroup 6
- Thermoleophila

Alpha diversity measure

Shannon

Time Point
- T0
- T1
- T2
Fumigant had significant impacts on soil fungi.
Management practices can influence soil microbes

- Raised beds
- Fumigation
- Soil amendments
Soil organic matter

Disease suppression

Nutrient cycling

Nutrient availability

Root growth
Difficulties with SOM in Florida
Building soil organic matter in Florida: compost

Benefits

• Availability
• Nutrient source

Difficulties

• Expensive
• Application rate
• Availability
• Variability
• Potential source of weed seed
Compost Tomato Trial:

- Plant-based compost applied at bedding:
 - No compost
 - 10 tons/acre
 - 40 tons/acre

- Beds fumigated with Pic-Clor 60

- Soil samples collected every 30 days
Significant differences in bacterial community composition

No compost
Compost

Planting
1 month
2 months
First harvest
Last harvest
Building soil organic matter in Florida: cover crops

- Cover crops = crops planted to benefit the soil, generally not harvested for profit

- Lots of benefits to soil (and farmer):
 - Provide N – either by N—fixation from legumes, or by scavenging extra N from previous crop
 - Reduce weeds
 - Reduce soil erosion
 - Reduce soil compaction
 - Increase soil moisture
 - Increase soil organic matter
Cover crops and management practices

- Increasingly common practice for grains, cotton, corn, soybean farmers, but also used with some vegetable production

- Cover crops planted during fallow season

- Cover crop use more frequently combined with conservation or no-tillage management practices
Symbiotic N_2-fixation: Rhizobia

- Soil bacteria that attach and colonize legume roots
- Fix N for plants
- Plants provide carbon for the bacteria
- N_2-fixation requires low or no oxygen, so nodules formed
 - 1 nodule can contain up to 10^9 rhizobia
 - Use leghaemoglobins
 - O_2-buffering proteins similar to the hemaglobins in our blood

- Nevins 2019
Cover crop mix optimization

2. NL + cowpea + sunnhemp
3. NL + cowpea + sesbania
4. NL + sunnhemp + sesbania
5. NL + 3 L (legumes)
6. AU Golden sunnhemp + 2 L + 3 NL
7. Non-legume (NL)
Cover crops species provide different benefits

Legume cover crops:
 • Cowpeas (*Vigna unguiculate*)
 • Vetches (*Vicia* spp.)
 • Crimson clover (*Trifolium incarnatum*)

Nematode management (non-host plants):
 • Cereal rye (*Secale cereale*)
 • Wheat (*Triticum aestivum*)
 • Crimson clover (*Trifolium incarnatum*)

Weed suppression:
 • Subterranean clover (*Trifolium subteraneum*)
 • Buckwheat (*Fagopyrum esculentum*)
 • Sorghum-sudangrass
Soil microbes increased with cover crops

North Grove

- **LG + NLG**
- **NLG**
- **GS**

South Grove

- **LG + NLG**
- **NLG**
- **GS**

LG + NLG: legume + non-legumes cover crops

NLG: non-legume cover crops

GS: grower-standard
SOM increased after 1 year of cover crops

North Grove

LG + NLG: legume + non-legumes cover crops
NLG: non-legume cover crops
GS: grower-standard

South Grove

LG + NLG: legume + non-legumes cover crops
NLG: non-legume cover crops
GS: grower-standard
Differences between human gut and soil microbiome

- Similar concentration of bacteria, but vastly different levels of diversity:

 - **Human gut:**

 - **1,000 species**, with approximately 160 “common” species (*Qin et al. 2010*)

 - **Soil:**

 - **10,000 to 50,000 species**, unknown how many are “common”

- Even in the well-characterized human gut, nearly 50% of the genes are uncharacterized (*Lloyd-Price et al. 2016*)
Difficulties with soil microbial amendments

• Beneficial taxa can be very crop and/or environment specific

• Unknown how management interacts with added microbes:
 • How will introduced organisms interact with native organisms?
 • What conditions are necessary to keep introduced organisms alive and increasing in number?

• Things to consider when evaluating products:
 • What organisms are being added?
 • What is the concentration?
 • What other compounds are being added?
 • What conditions are required for inoculation?
 • How often does inoculation need to occur?
Soil type impacts on microbial amendments

- Greenhouse trial with tomato
- Four treatments:
 - Bio-1: Mychorrhizae
 - Bio-2: Azospirillum sp., Bacillus sp., Pseudomonas sp., Tricoderma sp.
 - Bio-3: Lactobacillus sp., yeasts
 - Bio-4: Bacillus sp.
- Applied at recommended rates
- Planted in Florida field soil
- Repeated twice
Microbial additions did not impact plant growth

Nuzzo et al. (2020)
Microbial additions did not impact microbial community composition.
Microbial additions did not impact microbial community composition.
Summary

- Soil microbes are important parts of a healthy soil
- Management practices can impact the soil microbial community, but changes can be specific to the crop, soil conditions, and management practice
- We are just beginning to understand the diversity and complexity of soil microbes and their interactions with each other and the environment
Dr. Davie Kadaympakeni
Dr. Ramdas Kanissery
Dr. Tara Wade
Dr. Ute Albrecht
Dr. Nathan Boyd
Bo Meyering
Rachel Berner

SWFREC Farm Crew
Bob Newsome, John Hoffman, and Forrest Taylor: Barron Collier Partnership

Joby Sherrod: Duda & Sons

Strauss Lab:
Dr. Antonio Castellano Hinojosa, Postdoc
Brittney Monus, Biological Scientist
Kira Sorochkina, PhD candidate
Clayton Nevins, PhD candidate
Diderot Saintilma

This work is supported by the USDA NIFA Hatch project #1011186, CRDF 18-059C, CRDF 19-030C