Peach production and what we have learned

Dr. Dario J. Chavez
Peach Research and Extension Specialist, Horticulture, UGA
World Peach Production

<table>
<thead>
<tr>
<th>Countries</th>
<th>Area harvested (Ha)</th>
<th>Yield (Hg/Ha)</th>
<th>Production (tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China, mainland</td>
<td>770000</td>
<td>155844</td>
<td>12000000</td>
</tr>
<tr>
<td>Italy</td>
<td>71012</td>
<td>187521</td>
<td>1331621</td>
</tr>
<tr>
<td>United States of America</td>
<td>56365</td>
<td>187852</td>
<td>1058830</td>
</tr>
<tr>
<td>Spain</td>
<td>50000</td>
<td>149440</td>
<td>747200</td>
</tr>
<tr>
<td>Greece</td>
<td>44100</td>
<td>172381</td>
<td>760200</td>
</tr>
<tr>
<td>India</td>
<td>37500</td>
<td>66667</td>
<td>250000</td>
</tr>
<tr>
<td>Mexico</td>
<td>33216</td>
<td>49032</td>
<td>162866</td>
</tr>
<tr>
<td>Turkey</td>
<td>28362</td>
<td>202993</td>
<td>575730</td>
</tr>
<tr>
<td>Egypt</td>
<td>26611</td>
<td>107171</td>
<td>285194</td>
</tr>
<tr>
<td>Argentina</td>
<td>26000</td>
<td>111538</td>
<td>290000</td>
</tr>
<tr>
<td>Democratic People's Republic of Korea</td>
<td>21500</td>
<td>55116</td>
<td>118500</td>
</tr>
<tr>
<td>Iran (Islamic Republic of)</td>
<td>20000</td>
<td>250000</td>
<td>500000</td>
</tr>
<tr>
<td>Chile</td>
<td>20000</td>
<td>162500</td>
<td>325000</td>
</tr>
<tr>
<td>Brazil</td>
<td>19155</td>
<td>121632</td>
<td>232987</td>
</tr>
<tr>
<td>Australia</td>
<td>19000</td>
<td>52875</td>
<td>100462</td>
</tr>
<tr>
<td>Algeria</td>
<td>18657</td>
<td>95399</td>
<td>177986</td>
</tr>
<tr>
<td>Tunisia</td>
<td>16000</td>
<td>80000</td>
<td>128000</td>
</tr>
<tr>
<td>Pakistan</td>
<td>15500</td>
<td>36129</td>
<td>56000</td>
</tr>
<tr>
<td>Republic of Korea</td>
<td>14357</td>
<td>120219</td>
<td>172599</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>14000</td>
<td>19643</td>
<td>27500</td>
</tr>
<tr>
<td>France</td>
<td>11923</td>
<td>231084</td>
<td>275521</td>
</tr>
</tbody>
</table>

Peach Bearing Acreage
United States: 2005-2014
General Information

• Georgia ranks 3rd in the US in peach production.

• 40,600 tons with 10,300 acres with total value of $35M (USDA- NASS, 2015).

• Ranks 36th across all the GA commodities.

• Part of Georgia since the 1800’s – Peach State.
General Information

• Peach mostly for fresh consumption (some canning).

• There are five growers that account for 90% of the GA industry.

• Approximately 40-60 varieties grown – season starts middle of May until the end of August.
- UGA Griffin avg. chill hours 1,093
- USDA avg. chill hours 844
- UGA-USDA-UF avg. chill hours 589
Chilling Requirements

• Use www.weather.uga.edu to determine chill hours for your area
 - Hours between 32°F and 45°F or below 45°F

• Range should be from October to February

• Choose varieties with chill requirements within 200 hours of average.

• If you are north of Brooks county avoid cultivars that start with Florida- or Gulf-
Average Chilling Hours Calculator

From: October ▼ 1 ▼ 2016 ▼

To: February ▼ 6 ▼ 2017 ▼

<table>
<thead>
<tr>
<th>From October-1</th>
<th>To February-6</th>
<th>Number of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>2017</td>
<td>497</td>
</tr>
<tr>
<td>2015</td>
<td>2016</td>
<td>599</td>
</tr>
<tr>
<td>2014</td>
<td>2015</td>
<td>937</td>
</tr>
<tr>
<td>2013</td>
<td>2014</td>
<td>1007</td>
</tr>
</tbody>
</table>

>Temp <= 45 °F
Pre-Plant Considerations

Site Selection

- Spring frost major limiting factor
- Elevated relative to surrounding land (cold air drainage)
- Direction of the slope affects orchard performance
 - North facing slope less prone to spring frost
- Well drained medium textured soil
 - Moderate fertility
- Minimum rooting depth of 30 to 36”
Pre-Plant Considerations

Site Selection

- Take note of predominant vegetation around (soil conditions and tell you about drainage).
- Peach trees cannot tolerate waterlogged soils for an extended period of time (planting in berms).
- Water availability and access (VERY IMPORTANT!)
- History of peach trees before (possible problem with nematodes, etc).
 - Oak root rot a problem in GA and SC

Pre-Plant Considerations

Soil Preparation

• Soil sample 6 – 12 months ahead of winter planting
• One sample at the 8” depth and one for 8-16” should be taken
• Use dolomitic limestone to adjust pH in subsoil and top 8”
• Application of Phosphorous should be done prior to planting as well
• Nematode samples
• Control weeds (non-persistent herbicide)
Soil Test Report

Sample ID

Client Information
Chavez, Dario
Horticulture, Stress Physiology
Griffin, GA 30224
Sample: 1A
Crop: Peaches (non-bearing)

Lab Information
Lab #17757
Completed: Dec 23, 2015
Printed: Dec 23, 2015
Tests: S1 S6 S13 S20N

Contact
Soil, Plant, and Water Laboratory
2400 College Station Road
Athens, GA 30602
ph: 706-542-5350
e-mail: soiltest@uga.edu

Results

<table>
<thead>
<tr>
<th>Mehlich I Extractant</th>
<th>UGA Lime Buffer Capacity Method*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>Sufficient</td>
</tr>
<tr>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phosphorus (P)</th>
<th>Potassium (K)</th>
<th>Calcium (Ca)</th>
<th>Magnesium (Mg)</th>
<th>Zinc (Zn)</th>
<th>Manganese (Mn)</th>
<th>pH</th>
<th>Lime Buffer Capacity (LBC)</th>
<th>Soil Test Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 lbs/Acre</td>
<td>174 lbs/Acre</td>
<td>1612 lbs/Acre</td>
<td>237 lbs/Acre</td>
<td>3 lbs/Acre</td>
<td>72 lbs/Acre</td>
<td>6.2</td>
<td>309</td>
<td></td>
</tr>
</tbody>
</table>

Recommendations

Can’t find a specific grade of fertilizer? Try our Fertilizer Calculator: http://aesl.ces.uga.edu/soil/fertcalc/

Limestone	Nitrogen (N)	Phosphate (P₂O₅)	Potash (K₂O)	Sulfur (S)	Boron (B)	Manganese (Mn)	Zinc (Zn)
0 tons/Acre | See Comments| 30 lbs/Acre | 60 lbs/Acre | -- | -- | -- | -- |

Recommended pH: 6.0 to 6.5

*For information on how the Soil, Plant, and Water Laboratory measures and reports pH and makes lime recommendations, see http://aesl.ces.uga.edu/soil/SoilpH.html.
Sample 8-16"

Soil Test Report

Sample ID

Client Information

Chavez, Dario
Horticulture, Stress Physiology
Griffin, GA 30224
Sample: 1B
Crop: Peaches (non-bearing)

Lab Information

Lab #17749
Completed: Dec 23, 2015
Tests: S1 S6 S13 S20N

Contact

Soil, Plant, and Water Laboratory
2400 College Station Road
Athens, GA 30602
ph: 706-542-5350
e-mail: soiltest@uga.edu

Results

Mehlich I Extractant

<table>
<thead>
<tr>
<th>Results</th>
<th>Phosphorus (P)</th>
<th>Potassium (K)</th>
<th>Calcium (Ca)</th>
<th>Magnesium (Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>11 lbs/Acre</td>
<td>125 lbs/Acre</td>
<td>1168 lbs/Acre</td>
<td>243 lbs/Acre</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UGA Lime Buffer Capacity Method*

<table>
<thead>
<tr>
<th>pH *</th>
<th>Lime Buffer Capacity (LBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>268</td>
</tr>
</tbody>
</table>

Soil Test Index

<table>
<thead>
<tr>
<th>Soil Test Index</th>
<th>Phosphorus (P)</th>
<th>Potassium (K)</th>
<th>Calcium (Ca)</th>
<th>Magnesium (Mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 lbs/Acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125 lbs/Acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1168 lbs/Acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243 lbs/Acre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommendations

Can't find a specific grade of fertilizer? Try our Fertilizer Calculator: http://aesl.ces.uga.edu/soil/fertcalc/

Limestone	Nitrogen (N)	Phosphate (P₂O₅)	Potash (K₂O)	Sulfur (S)	Boron (B)	Manganese (Mn)	Zinc (Zn)
0 tons/Acre | See Comments | 60 lbs/Acre | 70 lbs/Acre | -- | -- | -- | -- |

Recommended pH: 6.0 to 6.5

*For information on how the Soil, Plant, and Water Laboratory measures and reports pH and makes lime recommendations, see http://aesl.ces.uga.edu/soil/SoilpH.html.

See Peaches (non-bearing) Fact Sheet
Parts of a grafted tree

- **Scion**
- **Rootstock**

Scion = shoot system

Rootstock = root system
Varieties

• Chilling requirement is #1 consideration
 • Hours between 32°F and 45°F
 • Measured from October 1st to February 10th.

• Bacterial Spot resistance #2

• Other considerations
 • Melting vs. non melting
 • Flesh color
 • Freestone vs. Clingstone
 • Ripening Dates
Ripening Dates

- In Georgia fruit ripen from Early May to September (~60 varieties)

- Choose varieties to spread out harvest over desired market window (1-2 weeks of harvest)

Recommended Cultivars

Table 1. Recommended peach varieties grown in Georgia and South Carolina in the order of their harvest period. Each variety is described by harvest period, chilling requirement, flesh color (yellow or white), flesh texture (melting or non-melting), pit attachment (clingstone, semi-clingstone, or freestone), and bacterial spot susceptibility (susceptible/resistant)

<table>
<thead>
<tr>
<th>Harvest Period</th>
<th>Chill</th>
<th>Variety</th>
<th>Flesh Color / Flesh Texture / Pit Attachment / Bacterial Spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late April</td>
<td>Low chill, <600 hours</td>
<td>Flordelena*</td>
<td>Yellow / Melting / Clingstone / Resistant</td>
</tr>
<tr>
<td>Early May</td>
<td>Low chill, <600 hours</td>
<td>Gulfcrest*</td>
<td>Yellow / Non-melting / Semi-clingstone / Resistant</td>
</tr>
<tr>
<td>Mid May</td>
<td>Low chill, <600 hours</td>
<td>Flordakings*</td>
<td>Yellow / Melting / Clingstone / Resistant</td>
</tr>
<tr>
<td>Mid May</td>
<td>Moderate chill, 600-750 hours</td>
<td>Regal*</td>
<td>Yellow / Melting / Semi-clingstone / Highly Susceptible</td>
</tr>
<tr>
<td>Late May</td>
<td>Low chill, <600 hours</td>
<td>Gulfrince*</td>
<td>Yellow / Non-melting / Clingstone / Highly Resistant</td>
</tr>
<tr>
<td>Late May</td>
<td>Moderate chill, 600-750 hours</td>
<td>Springprince</td>
<td>Yellow / Non-melting / Clingstone / Moderately Susceptible</td>
</tr>
<tr>
<td></td>
<td>Moderate chill, 600-750 hours</td>
<td>Empress</td>
<td>Yellow / Melting / Clingstone / Moderately Susceptible</td>
</tr>
<tr>
<td></td>
<td>Moderate chill, 600-750 hours</td>
<td>Goldprince</td>
<td>Yellow / Melting / Clingstone / Resistant</td>
</tr>
</tbody>
</table>
Rootstock Selection

<table>
<thead>
<tr>
<th>Rootstock</th>
<th>Ring Nematode Tolerance</th>
<th>PTSL Tolerance</th>
<th>Root-knot resistance</th>
<th>Oak Root Rot Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lovell</td>
<td>Fair</td>
<td>Fair-Good</td>
<td>Susceptible</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Halford</td>
<td>Fair</td>
<td>Fair-Good</td>
<td>Susceptible</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Nemaguard</td>
<td>Poor</td>
<td>Poor</td>
<td>Resistant</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Guardian</td>
<td>Fair-Good</td>
<td>Very Good</td>
<td>Resistant</td>
<td>Susceptible</td>
</tr>
<tr>
<td>MP-29</td>
<td>Very Good</td>
<td>Very Good</td>
<td>Resistant</td>
<td>Resistant</td>
</tr>
<tr>
<td>Sharpe</td>
<td>Likely ??</td>
<td>Good</td>
<td>Resistant</td>
<td>Resistant</td>
</tr>
<tr>
<td>Flordaguard</td>
<td>Poor</td>
<td>Fair-Good</td>
<td>Resistant</td>
<td>Susceptible</td>
</tr>
</tbody>
</table>

- Southern growers need to consider Nemaguard or Guardian
- New rootstocks have been developed to fight oak root rot
- Reputable nurseries should know their rootstock
Incorrect selection of rootstock

http://www.ars.usda.gov/is/AR/archive/nov11/nematodes1111.htm
Management

• Orchard design

• Tree planting
 • Training

• Fruit thinning

• Tree Training

• Nutrition
Orchard Design

• Most common spacing 18’ X 20’ (121 trees/A)
 • Can be decreased to accommodate smaller orchards and equipment

• Plant across slope

• Microjet or drip irrigation (normally is installed after planting – currently testing)
Tree Planting/Training (year 1)

- Bare root trees
 - Plant at same depth as in the nursery
 - Remove top 1/3 of whip
 - Be sure to leave healthy buds above graft union
Tree Training (year 2)

• Begin to develop 3-4 main scaffold limbs
 • 18-24” above the ground
 • Choose limbs with wider crotch angles

• Limbs arranged around the trunk
 • Within 6” vertically

• Remove suckers from base of trunk

• Remove vigorous “water spouts” from the center of the tree
Figure 4. Heading (left) removes a portion of the shoot or limb, stimulating branching below the cut. Heading is most useful for stimulating branching at specific locations when training young trees. Thinning (right) removes an entire shoot or limb to its point of origin or to a side limb. Thinning is the least invigorating type of cut with the least effect on reducing fruit production. Thinning cuts are most useful for promoting fruit production and for maintenance pruning.

Figure 5. Bench cut (left) is formed by pruning a vigorous, upright limb to a more horizontal limb. Due to loss of apical dominance in the horizontal limb, vigorous water sprouts develop at the “bench.” Correct method is to thin to limbs that are more similar in angle (right) to maintain some apical dominance. Scaffolds should be trained to a 45° angle in early years to minimize need for severe bench cuts.
Figure 6. Methods to train first-summer trees. Topped center (top) involves cutting the top 2-3 shoots in half early to mid-season to form a “bush” in the tree center. Delayed heading (bottom) involves complete removal of the top two to three shoots below the initial heading cut. Both methods direct growth into more desirable scaffolds. Topped center method is preferred because “bush” acts to force scaffold out and up, maintaining more ideal angles.
Figure 7. One-year old tree before (left) and after (right) first-year dormant pruning. Select three to four well-spaced primary scaffolds, ideally spaced several inches apart vertically. Prune primary scaffolds to laterals (which form secondaries) at around two to three feet from the crotch. Thin out vigorous upright shoots in center but leave some weaker laterals.

Figure 8. Two-year old tree before (left) and after (right) the second-year dormant pruning. Select secondary scaffolds at two to three feet from the crotch. Thin out low and horizontal shoots and excessively vigorous shoots growing toward the center. Maintain scaffolds at a 45° angle, minimizing the use of severe bench cuts.
Tree Training (Year 3+)

- Maintain scaffold limbs form and height
- Annual removal of water sprouts and sucker in season
- Pruning to manage fruiting wood and fruit load should be done prior to bloom
- Space fruiting wood for fruit sizing and light penetration
Figure 9. Four-year old tree before (left) and after (right) pruning in the dormant season. Fruiting wood is thinned out to reduce the crop load. Health of fruiting wood is maintained throughout the tree by adequate light penetration. Thin branches back towards scaffolds to encourage new shoot growth close to scaffolds. Light summer pruning may be useful to maintain light penetration in tree centers, maintaining health of fruiting wood throughout the tree.
Fruit Thinning

• Increase yield per tree and fruit size

• Improves return bloom and bud set

• Improves tree health
 • Over-cropped trees are more susceptible to disease, cold injury and have a shorter life span

• Timed after last damaging cold event (optimal before 40 DAB)
Nutrition

• Leaf samples to be collected for foliar analyses after harvest (around July /August)

• Select the same tree to follow year after year

• Fertilization (based on growth and foliar analyses)
 • First year: March 1lb of 10-10-10 per tree, May 1lb of calcium nitrate, and July 1lb of calcium nitrate.
 • Second year: March 2lb of 10-10-10 per tree, May 1.25lb of calcium nitrate, and July 1.25lb of calcium nitrate.
 • Third year: maintain (unless deficiency) add postharvest appl.
Insect Pests

• Scale insects
 • San jose
 • White Peach Scale

• Borers
 • Peach Tree Borer
 • Lesser Peach tree Borer

• Fruit Feeders
 • Plum Curculio
 • Stink Bugs
 • Sap Beetles
 • Thrips?
Lesser Peachtree Borers (LPTB)

Synanthedon pictipes

- Gum and frass in wounds
- Attacks scaffold limbs from crotch up
- Particularly bad at large pruning wounds and cold injury sites
Lesser Peachtree Borer Control

- Egg laying from March to November
- Pyrethroids suppress LPTB
- Chlorpyrifos in post harvest cover spray is necessary.
Peachtree Borer (PTB) *Synanthedon exitiosa*

- Overwinter as larvae in galleries in the butt of the tree and major roots
- Pupate just below the soil surface
- Emerge mid-to late-summer
- August – September is peak
Peachtree Borer Control

• Two applications of an appropriate insecticide applied as a coarse spray with a handgun to the butt of the tree and up several inches is needed to form barrier.

• Chlorpyrifos, Rimon, Exirel and Altacor provided exceptional control in 2014 trials

• Applications made post harvest and again in early September were effective
Borer Control

• Cover sprays do not adequately control LPTB or PTB

• Stressed trees are more susceptible

• Wounds of all types are highly attractive to both

• Both can easily reduce tree life by greater than 2 years
LPTB and PTB

Area-wide Approach to Mating Disruption Manages Bokers Attacking Peach

Ted Cottrell1 and Dan Horton2

1USDA, ARS, Byron, GA
2Univ. of GA, Dept. of Entomology, Athens, GA
LPTB injures trunk and scaffold limbs

PTB injures roots/base of trunk
What is mating disruption and how does it work?
Season-long dispenser formulated for the southeast

2015 and 2016 Area-wide LPTB/PTB Mating Disruption
All peach orchards in this area (outlined in blue) were treated with pheromone dispensers in early March (2015 and 2016).

Commercial tree nursery for landscape trees – No *Prunus* spp.

Peach orchard removed before demonstration trial began in 2015.

Commercial sod grass farm

4 X 5.3 miles
Isomate LPTB Plus

- **Dispenser rate:** 150/acre
- **Peach Acreage to Treat:** *All of it!*
- **Dispensers applied:** late February/early March
- **Pests affected:** LPTB and PTB
Areas marked in black:
Sampled each tree for LPTB wounds and none found during Feb. 2015. Re-sampled all trees again during 2016 and found NO LPTB wounds.

Areas marked in yellow:
Interior - Sampled all trees for PTB injury during April 2016. Edge – Sampled all trees, 2 trees deep, along the edge. Results - Found 0 trees with PTB infestation.

Other orchards were similarly sampled with similar results. In total, only 2 active LPTB wounds were found. No active PTB infestation was found.

Sampling to be done again during winter/spring 2017.
Key Label/Use Points:

- Rate: 150 dispensers per acre
- Apply as high in tree as one can reasonably reach on lateral branches in a uniform manner across the field
- Apply before first flight occurs in spring
Beneficial Nematodes Are Effective Control Agents for Peachtree Borers

D. Shapiro-Ilan1, T. Cottrell1, R. Mizell2, Dario Chavez3 & Jeff Cook3 & D. Horton3

1USDA-ARS Byron, GA, 2University of FL, 3University of GA
Entomopathogenic Nematodes (EPNs)

- Two genera: *Steinernema* & *Heterorhabditis*
- Safe bio-insecticides exempt from EPA registration
- Applied using standard agricultural equipment
- About 9 species of nematodes are currently commercially available for control of various pests including white grubs, thrips, black vine weevil, chinch bug, fungus gnats, fleas, citrus weevils, black cutworm, small hive beetle, etc. (Shapiro-Ilan et al. 2012, 2014)
EPNs kill their insect host with the help of a partner – symbiotic bacteria

- Bacteria are the primary killing agents & produce antibiotic defenses to protect against other microbial invaders
- Nematodes also contribute to killing the host, suppress the immune system, and act as vectors for the bacteria (bacteria cannot survive in the soil without the nematodes)
- There is a high degree of specificity in the relationship
- The antibiotic byproducts are strongly antifungal and thus being pursued for suppression of plant disease such as brown rot and scab
Diagram by Bill Joyner, USDA-ARS
Barricade as an Improved Formulations for Using Nematodes Versus LPTB

- **Barricade®, firegel applied after nematodes allowed high levels of LPTB suppression on peach limbs (65-100% control)** (Shapiro-Ilan et al. 2010)
- May have broad applications for use vs. other pests/crops
- Potential problem – 2 sprays needed (nematodes & Barricade)
- **More recently**: Determined if nematodes can be applied effectively in a single spray with a reduced concentration of Barricade
Field Trial vs. LPTB: Quincy, FL

- **Treatments:**
 - Nematodes* + Barricade full (4%)
 - Nematodes + Barricade 2%
 - Nematodes without Barricade
 - chlorpyrifos
 - Water control

- Apply treatments with hand sprayer to 4 reps of 3 infested wounds (12 wounds total per treatment, RBD)
- Assess live/dead LPTB one week later, 11/12/2013
- Repeat 10/29/2014 in CRD (18-25 wounds per treatment)

* Commercially produced *S. carpocapsae* (Sc), 1 mill IJs / wound
Field Trial Results 2013

- Nematodes (Sc) + Barricade at full and 2% rates provided control equal to chlorpyrifos
Control PTB – Organic production

- Organic farm (Minter’s farm, Fayetteville, GA)

- Treatments:
 - Nematodes with pine mulch
 - Nematodes only
 - Beauveria bassiana
 - Untreated control

- First year data: low infestation (not significant) – 2015
Field inoculations
Results Second year 2016 – PTB control

Minter Farms

% infested

Non-treated control Beauveria bassiana Steinernema carpocapsae S. carpocapsae with mulch

- Non-treated control: a
- Beauveria bassiana: b
- Steinernema carpocapsae: b
- S. carpocapsae with mulch: b
Application of Entomopathogenic Nematodes

• Nematodes applied 1.5 million per tree both times. They were applied with approx. 500 mL and then watered in with approx. 1 gallon of water. (irrigation every 3-4 days)

• There are currently commercial products available.

• Test to be used or injected in irrigation (could be done easily).
Diseases of Peach

- **Flower**
 - Blossom blight – *Monolinia fructicola*

- **Fruit**
 - Brown rot – *Monilinia fructicola*
 - Scab – *Fusicladium carpophilum*
 - Anthracnose

- **Leaves/Fruit**
 - Bacterial Spot

- **Trunk**
 - Bacterial Canker
 - Armillaria Root Rot (Oak root rot)
 - Phytophthora
 - Fungal Gummosis
Brown Rot
Brown Rot

• Blossom blight first appearance.

• Stem lesions form at base of flower buds

• These infected blooms, stem lesions and infected immature fruit serve as secondary inoculum source to infect mature fruit.

• Removal of inoculum and cover sprays are vital
Blossom Blight/Brown Rot

Blossom blight and brown rot management strategy

Topsin M + Captain®, Rowal, Vangard, Bravo
Captan, sulfur

Cover sprays (green fruit rot)
Preharvest (brown rot)

Scholar

Topsin M + Captain®, Topsin M + Captain®, Pristine, Merivon (14 DBH)

Captain, Abound, DMI® (7 DBH)

PF

Bloom (blossom blight)

Postharvest (brown rot)

a Topsin M should only be utilized once per year, and it should always be tank-mixed with Captan products for resistance management.

b If DMI resistance is suspected or documented, use captan instead of sulfur in cover sprays and use the high rate of Elite or Indar preharvest.
Armillaria Root Rot

- AKA Oak Root Rot
- Commercially available rootstock (previously described)
- Planting Methods? – walking tree technique
- Replant Issues

Source: Clemson University
Nematodes

• Ring (PTSL), Lesion, and Root Knot

• Sample ahead of planting
 • February – April: Primarily for ring
 • September – October: Primarily for root-knot and root-lesion

• Fumigate as needed

• Use of resistant rootstocks
 • Guardian, Nemaguard, MP-29, Flordaguard.
SOUTHEASTERN PEACH, NECTARINE AND PLUM PEST MANAGEMENT AND CULTURE GUIDE

- Pest Recommendations by growth stage
- Easy to understand threshold levels and spray directions
- Pesticide Rating Included

https://secure.caes.uga.edu/extension/publications/files/pdf/B%201171_10.PDF
Acknowledgments

Peach lab members
- Catherine Belisle (former MS student)
- Jun Liu (former MS student)
- Luis Monserrate (former intern and MS student)
- Bruno Casamali (PhD Student)
- Mary Sutton, Gray Strickland, Cierrah Guerrero, Courtney Bagwell, Eric Roldan, and Maybelle Flores (former interns)
- Malgorzata Florkowska (technician)
- Will Westmoreland (technician)
- Leigh Ann Fall (former technician)

UGA
- Jeff Cook
- Phil Brannen
- Mark Czarnota
- Brett Blaauw
- Harald Scherm

USDA-ARS
- Tom Beckman
- Chunxian Chen
- Ted Cottrell
- David Shapiro-Ilan
Useful links:
https://blog.extension.uga.edu/peaches/
http://www.caes.uga.edu/commodities/fruits/gapeach/

Questions?

THANKS!