IN-SERVICE TRAINING 2012

THE SECOND GENERATION (G2) OF BEST MANAGEMENT PRACTICES (BMPS) FOR CROP PRODUCTION

IRRIGATION TECHNOLOGY

Lincoln Zotarelli
Horticultural Sciences Department
University of Florida
Mid-Florida Research & Education Center Apopka,
February 29, 2012
Objectives

- To promote adoption of efficient irrigation technologies and management practices for irrigation
- To promote the use of information currently available including
 - evapotranspiration network related tools
 - improved irrigation scheduling and monitoring
- Increase public awareness of IFAS irrigation research and extension efforts
Water Conservation

SJRWMD Water Use

2005
- Public Water Supply: 31%
- Agriculture: 48%
- Domestic Self Supply: 8%
- Comm/Indus/Insti: 9%
- Recreational: 3%

1,217 MGD Total Use

2030
- 1,742 MGD Total Use
- Public Water Supply: 19%
- Agriculture: 58%
- Domestic Self Supply: 9%
- Comm/Indus/Insti: 4%
- Recreational: 9%

Note: Power production not shown in this figure – net consumptive use is 1% or less of total SJRWMD water use.
Irrigation technology

Do we understand our “SOIL – IRRIGATION – PLANT” system to able to recommend the correct irrigation design and management?

Are our growers ready to adopt high technology in our irrigation system?
Irrigation and nutrient management “an example”
Water management and vegetable production

- Two irrigation strategies
 - **Fixed irrigation** – 2 hours continuously
 Equivalent to 79.6 gal/100ft/day
 At the end of the season applied 16.2 in or 5,970 gal/100ft
 - **Controlled irrigation** – TARGET WAS TO WET THE TOP 12-16” OF SOIL
 5 possible irrigation windows controlled
 by soil moisture sensors set at soil field capacity
 Equivalent to 33.2 gal/100ft/day
 At the end of the season applied 6.7 in or 2,492 gal/100ft

- N-rates of 75, 150 and 225 lb/ac
 weekly fertigation with calcium nitrate

Source: Zotarelli et al 2008. Scientia Horticulturae
225 lbN/ac
Controlled irrigation

150 lbN/ac
2h fixed irrigation

75 lbN/ac
Controlled irrigation
Controlled irrigation
75 lbN/ac

Controlled irrigation
225 lbN/ac

2h fixed irrigation
150 lbN/ac Controlled irrigation

75 lbN/ac 2h fixed irrigation

150 lbN/ac 2h fixed irrigation

75 lbN/ac Controlled irrigation
Zucchini plant N accumulation

zucchini squash - N-plant accumulation

N accumulation (plant + fruit) lb/ac

Days after sowing

Contr Irr
Fixed Irr
Zucchini daily N uptake

Daily N uptake rate (lb/ac/day)

Days after sowing

Contr Irr
Fixed Irr
Irrigation vs. N-fertilization on zucchini

<table>
<thead>
<tr>
<th></th>
<th>75 lbN/ac</th>
<th>150 lbN/ac</th>
<th>225 lbN/ac</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zucchini marketable yield (lb/ac)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled irrigation – up to 5 irrig. windows/day</td>
<td>22,389</td>
<td>25,422</td>
<td>26,135</td>
<td>24,649 A</td>
</tr>
<tr>
<td>Fixed irrigation of 2h/day</td>
<td>15,525</td>
<td>19,535</td>
<td>19,891</td>
<td>18,316 B</td>
</tr>
<tr>
<td>Average</td>
<td>19,955 B</td>
<td>22,478 A</td>
<td>23,013 A</td>
<td></td>
</tr>
</tbody>
</table>

† Means within columns/lines followed by the same lowercase letters are not significantly different (P ≤ 0.05) according to Duncan’s multiple range test.
Irrigation vs. N-fertilization on zucchini

<table>
<thead>
<tr>
<th></th>
<th>75 lbN/ac</th>
<th>150 lbN/ac</th>
<th>225 lbN/ac</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zucchini marketable yield (lb/ac)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled irrigation – up to 5 irrig. windows/day</td>
<td>22,389</td>
<td>25,422</td>
<td>26,135</td>
<td>24,649 A</td>
</tr>
<tr>
<td>Fixed irrigation of 2h/day</td>
<td>15,525</td>
<td>19,535</td>
<td>19,891</td>
<td>18,316 B</td>
</tr>
<tr>
<td>Average</td>
<td>19,955 B</td>
<td>22,478 A</td>
<td>23,013 A</td>
<td>100%</td>
</tr>
</tbody>
</table>

84% 100% 102%
Effect of irrigation on solute displacement
(injecting dye in fertigation lines)

<table>
<thead>
<tr>
<th>Soil Sensor Based Irrigation</th>
<th>24 hrs</th>
<th>3 days</th>
<th>7 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed Time Irrigation Schedule</th>
<th>24 hrs</th>
<th>3 days</th>
<th>7 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Keeping water and nutrients in the plant root zone
Vegetable & Citrus Irrigation in Florida

Percentage of total irrigated land in Florida by irrigation delivery method (2004)

- Sprinkler: 11%
- Seepage: 44%
- Micro: 45%

Planted Acreage 1998-2006

Veg. 14%

Citrus 86%

Average of total of 207,700 acres planted with vegetable crops and 739,500 acres with citrus in Florida between 1998 and 2006 (NASS/USDA, 2008)
Effect of soil texture and soil tension on soil water availability

Kramer and Boyer (1995)
Actual soil moisture on sandy soils

Saturation
- VWC > 30%
- VWC > 0.3 m³/m³
- -1 cbar
- -0.001 MPa

Field Capacity
- VWC approx. 12%
- VWC > 0.12 m³/m³
- -10 cbar
- -0.01 MPa

Wilting Point
- VWC approx. 6%
- VWC > 0.06 m³/m³
- -1500 cbar
- -1.5 MPa
What can we do to improve water use efficiency of irrigation systems in Florida?

General guidelines:
- Proper irrigation design
- Determine and record operation values and water consumption
- Check system uniformity
- Irrigation system maintenance (documented maintenance)
- Record flow rate, pressure delivered by the pump, energy consumption, etc.

Resources: Mobile Irrigation Lab (MIL) – free of charge, provide irrigation systems evaluation with recommendation with system upgrades, irrigation scheduling, maintenance items. Contact local NRCS District Conservationist.
Irrigation technology, what is currently available?

- **MICROIRRIGATION**
 - Advantages:
 - Deliver water right to the plant;
 - Frequent, small applications;
 - Low volume required;
 - Don’t wet the entire soil surface or volume;
 - Perfect match with plasticulture (additional soil water conservation, up to 30%)
 - Proper timing

- **WHAT CAN BE DONE TO IMPROVE IT?**
 - Improve irrigation scheduling based on ET information
Vegetable Irrigation Scheduler

Please enter the specifications of your irrigation system and click [Create Schedule] to create a 2-week irrigation schedule.

<table>
<thead>
<tr>
<th>Planting</th>
<th>Irrigation System</th>
<th>Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-Row: 6 ft (1 - 10)</td>
<td>Rate: 30 gals/100 ft Row/hr (1 - 45)</td>
<td>FAWN Station: Citra</td>
</tr>
<tr>
<td>Planting Date: 01/18 mm/dd</td>
<td>System Efficiency: 95 % (50 - 100)</td>
<td>ET: 0.0862"</td>
</tr>
<tr>
<td>Crop: Tomato</td>
<td></td>
<td>Kc: 0.75</td>
</tr>
</tbody>
</table>

Create Schedule

Irrigation Schedule

Irrigate 0 hours and 51 minutes a day.

Bookmark your specifications

Click link to my specifications to save your specifications in the URL, then add-to-favorites/bookmark the page for later use.

About / Help

For help or more information about the scheduler, contact:

K.T. Morgan, Ph.D. <ktm@ifas.ufl.edu>
Assistant Professor, Soil and Water Science
University of Florida
Southwest Florida Research and Education Center
Immokalee, FL
Office: (239) 658-3400

Thanks to the South Florida Water Management District for funding this research.

Also see: Competition For Water Resources.
Irrigation technology, what is currently available?

- **MICROIRRIGATION**
 - Advantages:
 - Deliver water right to the plant;
 - Frequent, small applications;
 - Low volume required;
 - Don’t wet the entire soil surface or volume;
 - Perfect match with plasticulture (additional soil water conservation, up to 30%)
 - Proper timing

- **WHAT CAN BE DONE TO IMPROVE IT?**
 - Improve irrigation scheduling based on ET information
 - Soil moisture monitoring technology
Sensors Used to Measure Soil Moisture Content

- Tensiometers
- Granular Matrix
- TDR
- Capacitance Sensors
- Radio Telemetry
Potential Use of Irrigation Technologies in Florida

• Vegetable Crops – shallow root zone, high valued crops, water conservation – sensor-based systems
 • drip irrigation – high potential for acceptance due to control systems used.
 • Seepage irrigation – potential for use limited to monitoring only since system control is coarse.

• Citrus – Perennial, deeply rooted
 • Microsprinkler irrigation – systems becoming automated to reduce labor requirements and improved water and nutrient use efficiencies.

ADDITIONAL ADVANTAGE IF COUPLED WITH WIRELESS COMMUNICATION
Sensor Based Irrigation Control

- Types:
 - On-demand irrigation
 - Bypass irrigation
Variable Rate Irrigation – Center Pivot Irrigation

Matching field variability with an equally variable irrigation application applying irrigation water based on specific water needs of individual management zones, rather than applying a uniform rate across an entire field.

Speed Control
Uses an irrigation prescription defined by specific field conditions.

Zone Control
Individual sprinkler or span control allows up to 30 different possible VRI Zones along the center pivot.
Final considerations

- Combination of irrigation and fertilization
- On-field technology
- On-line technology
- Adaptation and creativity
- Extension & education
What are the barriers and incentives for BMP-irrigation implementation?

Economic investment

✓ Lack of information about the system, correct management and maintenance
✓ High-quality water

Incentives

✓ Cost-Share Programs for Water Conservation – qualified growers are expected to contribute a portion of total project cost
✓ Water Conservation Programs administered by USDA: e.g. Environmental Quality Incentives Program (EQIP)
✓ State and Regional Water Conservation Programs: e.g. BMP Cost-Share Program (FDASC); FARMS Program (SWFWMD); Water Protection and Sustainability Cost-Share Program (SJRWMD)